面向云数据中心的虚拟机部署与迁移优化机制

被引:5
作者
张磊
王莉
机构
[1] 天津中德应用技术大学软件与通信学院
基金
国家重点研发计划;
关键词
云数据中心; 虚拟机部署; 虚拟机迁移; 能效优化; 服务等级协议;
D O I
10.16208/j.issn1000-7024.2019.08.019
中图分类号
TP302 [设计与性能分析]; TP308 [机房];
学科分类号
081201 ; 0812 ;
摘要
传统虚拟机部署侧重降低主机能耗,忽略了全局能效。针对这一问题,提出一种自适应多重阈值的虚拟机部署与迁移优化算法。基于主机CPU利用率的历史数据集,设计两种基于K-均值聚簇的自适应多重阈值决策方法,依据多重阈值对主机进行分类;为对重载主机进行虚拟机迁移,设计3种虚拟机迁移选择方法,以能效最高的方式对迁移虚拟机进行重新部署。通过实际负载数据对算法进行仿真测试,测试结果表明,该算法可以有效降低能耗,SLA违例也较低,具有更高的能效。
引用
收藏
页码:2216 / 2223
页数:8
相关论文
共 20 条
[11]  
Virtual Machine Placement Algorithm for Both Energy-Awareness and SLA Violation Reduction in Cloud Data Centers[J] . Zhou Zhou,Zhigang Hu,Keqin Li,Laurence T. Yang. &nbspScientific Programming . 2016
[12]  
A novel virtual machine deployment algorithm with energy efficiency in cloud computing[J]. 周舟,胡志刚,宋铁,于俊洋.  Journal of Central South University. 2015(03)
[13]   基于优化AHP的虚拟机部署与调度策略 [J].
罗树 ;
沈记全 .
计算机工程与设计, 2015, 36 (12) :3375-3379
[14]  
Energy efficient allocation of virtual machines in Cloud data centers. Beloglazov A,Buyya R. IEEE/ACM International Conference on Cluster,Cloud and Grid Computing . 2013
[15]  
Adaptive threshold-based approach for energy-efficient consolidation of virtual machines in cloud data centers. Beloglazov A,Buyya R. Proceedings of the 8th International Workshop on Middleware for Grids,Clouds and e-Science . 2013
[16]  
Managing cost,performance,and reliability tradeoffs for energy-aware server provisioning. Guenter B,Jain N,Williams C. IEEE Infocom . 2013
[17]   支持随机服务请求的云虚拟机按需物理资源分配方法 [J].
曹洁 ;
曾国荪 ;
匡桂娟 ;
张建伟 ;
马海英 ;
胡克坤 ;
钮俊 .
软件学报, 2017, 28 (02) :457-472
[18]  
SPECpower_ssj2008:Driving server energy efficiency. Lange KD,Tricker MG,Arnold JA,et al. ACM/SPECInternational Conference on Performance Engineering . 2013
[19]  
Modeling and simulation of scalable Cloud computing environments and the CloudSim toolkit:Challenges and opportunities. Buyya R,Ranjan R,Calheiros RN. International Conference on High PERFORMANCE Computing&Simulation . 2013
[20]  
Energy-efficient migration and consolidation algorithm of virtual machines in data centers for cloud computing. Hongjian L,Guofeng Z,Chengyuan C,et al. Computing . 2016