vegetation restoration is a main ecological remediation technology for greening saline and alkaline soils.The objectives of this study were to determine the effect of1-aminobenzotriazole(ABT-1) on the growth and physiology of Tamarix chinensis under salt stress and to determine a suitable ABT-1 concentration and soil salinity(Sc) for propagating T.chihehsis-cuttings.Cuttings were soaked in water and ABT-1 solutions at three concentrations(50,100,and 200 mg L-1) and propagated in pots containing four soil salinity levels,mild(0.3%),moderate(0.6%),and severe(0.9% and 1.2%),and compared with a control.The cuttings were measured to determine growth indices and physiological and biochemical indices(e.g.,chlorophyll content,superoxide dismutase activity,peroxidase activity,and malondialdehyde content).ABT-1 was effective in improving survival,growth,and physiological processes of cuttings under salt stress.However,there was a threshold effect when using ABT-1 to facilitate propagation under salt stress.ABT-1 effects were insignificant when applied at low concentrations(<100 mg L).At a high concentration(> 100 mg L),ABT-1 limited growth and physiological activities.Under a salt stress level(Sc ≤0.9%),ABT applied at a 100 mg Lconcentration increased chlorophyll content and superoxide dismutase and peroxidase activities in the leaves and reduced malondialdehyde accumulation and membrane lipid peroxidation effects.As a result,ABT-1 enhanced the resistance of T.chinensis to salt stress.However,under high salt stress(>0.9%) and ABT-1 concentration(> 100 mg L),the physiological regulatory ability of T.chinensis seedlings weakened.T.chinensis grew well at a salt stress ≤0.9% and ABT ≤100 mg Land exhibited relatively high physiological regulatory ability and high salt adaptability