THE POSITIVE SEMIDEFINITE SOLUTION OF THE MATRIX EQUATION (ATXA, BTXB) = (C, D)

被引:0
|
作者
欧阳柏玉
佟文廷
机构
基金
中国国家自然科学基金;
关键词
positive semidefinite matrix; generalized singular value decomposition; matrix equation;
D O I
暂无
中图分类号
O151.21 [矩阵论];
学科分类号
070104 ;
摘要
In this paper,we consider the positive semidefinite solution of the matrixequation (A;XA, B;XB) = (C, D). A necessary and sufficient condition for the ex-istence of such solution is derived using the generalized singular value decomposition.The general forms of positive semidefinite solution are given.
引用
收藏
页码:72 / 80
页数:9
相关论文
共 50 条
  • [41] A note on Hermitian positive semidefinite matrix polynomials
    Friedland, S.
    Melman, A.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 598 : 105 - 109
  • [42] APPROXIMATION BY A HERMITIAN POSITIVE SEMIDEFINITE TOEPLITZ MATRIX
    SUFFRIDGE, TJ
    HAYDEN, TL
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1993, 14 (03) : 721 - 734
  • [43] Deterministic Symmetric Positive Semidefinite Matrix Completion
    Bishopl, William E.
    Byron, M. Yu
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27
  • [44] Positive semidefinite matrix completions on chordal graphs and constraint nondegeneracy in semidefinite programming
    Qi, Houduo
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (04) : 1151 - 1164
  • [45] APPROXIMATE FUZZY SOLUTION OF POSITIVE FULLY FUZZY MATRIX EQUATION
    Yang, Ya-Ming
    Du, Hui
    Guo, Xiao-Bin
    2019 15TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS 2019), 2019, : 272 - 276
  • [46] NUMBER OF POSITIVE EIGENVALUES OF THE SOLUTION TO THE DISCRETE LYAPUNOV MATRIX EQUATION
    MORI, T
    FUKUMA, N
    KUWAHARA, M
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1988, 19 (01) : 225 - 226
  • [47] SOLUTION OF SYMMETRIC POSITIVE SEMIDEFINITE PROCRUSTES PROBLEM
    Peng, Jingjing
    Wang, Qingwen
    Peng, Zhenyun
    Chen, Zhencheng
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2019, 35 : 543 - 554
  • [48] The symmetric solution of the matrix equation AXB = D on subspace
    Hu, Shanshan
    Yuan, Yongxin
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (08):
  • [49] SINGULARITY DEGREE OF THE POSITIVE SEMIDEFINITE MATRIX COMPLETION PROBLEM
    Tanigawa, Shin-ichi
    SIAM JOURNAL ON OPTIMIZATION, 2017, 27 (02) : 986 - 1009
  • [50] On the solution of the matrix equation AX plus XB=C
    Rutherford, DE
    PROCEEDINGS OF THE KONINKLIJKE AKADEMIE VAN WETENSCHAPPEN TE AMSTERDAM, 1932, 35 (1/5): : 54 - 59