L~p-gradient estimates for the commutators of the Kato square roots of second-order elliptic operators on R~n

被引:0
|
作者
Wenyu Tao [1 ]
Yanping Chen [1 ]
Yayuan Xiao [2 ]
Liwei Wang [1 ,3 ]
机构
[1] School of Mathematics and Physics, University of Science and Technology Beijing
[2] School of Mathematics and Physics, Anhui Polytechnic University
[3] Department of Mathematical Sciences, Ball State University
基金
中国国家自然科学基金; 中央高校基本科研业务费专项资金资助;
关键词
commutator; Kato square root; elliptic operators; Sobolev space;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
Let L=-div(A▽) be a second-order divergent-form elliptic operator,where A is an accretive n×n matrix with bounded and measurable complex coefficients on Herein,we prove that the commutator [b,L]of the Kato square root Land b with ▽b∈L~n(R~n)(n> 2),is bounded from the homogenous Sobolev space L~p(R~n) to L~p(R~n)(p-(L) <p<p+(L)).
引用
收藏
页码:575 / 594
页数:20
相关论文
共 50 条