Hydrogen induced cracking of X80 pipeline steel

被引:0
|
作者
Chao-fang Dong
机构
基金
中国国家自然科学基金;
关键词
pipeline steel; hydrogen induced cracking; electrochemical charging; fracture;
D O I
暂无
中图分类号
TG172 [各种类型的金属腐蚀];
学科分类号
080503 ;
摘要
The hydrogen-induced cracking (HIC) behavior of X80 pipeline steel was studied by means of electrochemical charging, hydrogen permeation tests, tension test, and scanning electron microscopy (SEM). The experimental results indicate that the increase of charging time and charging current density or the decrease of the solution pH value leads to an increase of the hydrogen content in X80 steel, which plays a key role in the initiation and propagation of HIC. It is found that the majority of macro-inclusions within the as-used X80 steel do not constitute a direct threat to HIC except aluminum oxides, which directly or indirectly lead to HIC. The hydrogen trap density at room temperature is estimated to be pretty high, and this is an essential reason why the steel is sensitive to HIC. After hydrogen charging, the elongation loss rate and area reduction of X80 steel decline obviously, taking a noticeable sign of hydrogen-induced plasticity damages. It is demonstrated that the losses of these plastic parameters have a linear relation to the fracture size due to hydrogen.
引用
收藏
页码:579 / 586
页数:8
相关论文
共 50 条
  • [41] Stress Corrosion Cracking Behavior of X80 Pipeline Steel in Acid Soil Environment with SRB
    Wang, Dan
    Xie, Fei
    Wu, Ming
    Liu, Guangxin
    Zong, Yue
    Li, Xue
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2017, 48A (06): : 2999 - 3007
  • [42] Stress corrosion cracking behavior induced by Sulfate-reducing bacteria and cathodic protection on X80 pipeline steel
    Xie, Fei
    Li, Jiahang
    Zou, Tan
    Wang, Dan
    Wu, Ming
    Sun, Xiaoqing
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 308
  • [43] SIMULATION ANALYSIS OF X80 PIPELINE STEEL WELDING
    Li, M. M.
    Ji, H. C.
    Lin, Q. S.
    Wu, C. D.
    Cai, S.
    METALURGIJA, 2023, 62 (02): : 230 - 232
  • [44] The Key Arts Study of X80 Pipeline Steel
    Li Tai-quan
    Ma Lian-chang
    Hu Zhao-hui
    JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL, 2010, 17 : 98 - 102
  • [45] Effect of Glutaraldehyde on Corrosion of X80 Pipeline Steel
    Tian, Feng
    Pan, Lin
    COATINGS, 2021, 11 (10)
  • [46] IMPACT FRACTURE BEHAVIOR OF X80 PIPELINE STEEL
    Deng Wei
    Gao Xiuhua
    Qin Xiaomei
    Zhao Dewen
    Du Linxiu
    Wang Guodong
    ACTA METALLURGICA SINICA, 2010, 46 (05) : 533 - 540
  • [47] Study on Improving the Performance of X80 Pipeline Steel
    Liu, Yan
    Chen, YongMan
    Wang, JianMing
    He, ChunLin
    MANUFACTURING CONSTRUCTION AND ENERGY ENGINEERING: 2016 INTERNATIONAL CONFERENCE ON MANUFACTURING CONSTRUCTION AND ENERGY ENGINEERING, 2016, : 302 - 305
  • [48] Microstructure and mechanical properties of pipeline steel X80
    Yi, Hai-Long
    Du, Lin-Xiu
    Wang, Guo-Dong
    Liu, Xiang-Hua
    Dongbei Daxue Xuebao/Journal of Northeastern University, 2008, 29 (02): : 213 - 216
  • [49] Control of Element and Inclusion for X80 Pipeline Steel
    Peng, Qichun
    Qiu, Lei
    Zou, Jian
    Tong, Zhibo
    ADVANCED ENGINEERING MATERIALS III, PTS 1-3, 2013, 750-752 : 431 - 435
  • [50] FRACTURE RESISTANCE AND FATIGUE CRACK GROWTH OF X80 PIPELINE STEEL IN GASEOUS HYDROGEN
    San Marchi, Chris
    Somerday, Brian P.
    Nibur, Kevin A.
    Stalheim, Douglas G.
    Boggess, Todd
    Jansto, Steve
    PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, PVP 2011, VOL 6, A AND B, 2012, : 841 - 849