A Bandit Method Using Probabilistic Matrix Factorization in Recommendation

被引:0
|
作者
涂世涛
朱兰娟
机构
[1] Key Laboratory of System Control and Information Processing of Ministry of Education
[2] Department of Automation,Shanghai Jiaotong University
关键词
recommend; matrix factorization; bandit;
D O I
暂无
中图分类号
TP391.3 [检索机];
学科分类号
摘要
In recommendation system,sparse data and cold-start user have always been a challenging problem.Using a linear upper confidence bound(UCB) bandit approach as the item selection strategy based on the user historical ratings and user-item context,we model the recommendation problem as a multi-arm bandit(MAB)problem in this paper.Enabling the engine to recommend while it learns,we adopt probabilistic matrix factorization(PMF) in this strategy learning phase after observing the payoff.In particular,we propose a new approach to get the upper bound statistics out of latent feature matrix.In the experiment,we use two public datasets(Netfilx and MovieLens) to evaluate our proposed model.The model shows good results especially on cold-start users.
引用
收藏
页码:535 / 539
页数:5
相关论文
共 50 条
  • [21] Probabilistic Matrix Factorization Recommendation Algorithm with User Trust Similarity
    Dong, Yuxin
    Fang, Shuyun
    Jiang, Kai
    Chen, Fukun
    Yin, Guisheng
    2018 3RD INTERNATIONAL CONFERENCE ON MEASUREMENT INSTRUMENTATION AND ELECTRONICS (ICMIE 2018), 2018, 208
  • [22] TaskRec: Probabilistic Matrix Factorization in Task Recommendation in Crowdsourcing Systems
    Yuen, Man-Ching
    King, Irwin
    Leung, Kwong-Sak
    NEURAL INFORMATION PROCESSING, ICONIP 2012, PT II, 2012, 7664 : 516 - 525
  • [23] TAG RECOMMENDATION VIA ROBUST PROBABILISTIC DISCRIMINATIVE MATRIX FACTORIZATION
    Lu, Cheng
    Shen, Bin
    Zhang, Lu
    Allebach, Jan
    2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 1170 - 1174
  • [24] Leveraging Decomposed Trust in Probabilistic Matrix Factorization for Effective Recommendation
    Fang, Hui
    Bao, Yang
    Zhang, Jie
    PROCEEDINGS OF THE TWENTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2014, : 30 - 36
  • [25] Recommendation algorithm of probabilistic matrix factorization based on directed trust
    Xu, Shangshang
    Zhuang, Haiyan
    Sun, Fuzhen
    Wang, Shaoqing
    Wu, Tianhui
    Dong, Jiawei
    COMPUTERS & ELECTRICAL ENGINEERING, 2021, 93
  • [26] Constrained Probabilistic Matrix Factorization with Neural Network for Recommendation System
    Cai, Guoyong
    Chen, Nannan
    INTELLIGENT INFORMATION PROCESSING IX, 2018, 538 : 236 - 246
  • [27] Collaborative recommendation algorithm based on probabilistic matrix factorization in probabilistic latent semantic analysis
    Huang, Li
    Tan, Wenan
    Sun, Yong
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (07) : 8711 - 8722
  • [28] Collaborative recommendation algorithm based on probabilistic matrix factorization in probabilistic latent semantic analysis
    Li Huang
    Wenan Tan
    Yong Sun
    Multimedia Tools and Applications, 2019, 78 : 8711 - 8722
  • [29] An Improved Neighborhood-Aware Unified Probabilistic Matrix Factorization Recommendation
    Cao, Yulin
    Li, Wenli
    Zheng, Dongxia
    WIRELESS PERSONAL COMMUNICATIONS, 2018, 102 (04) : 3121 - 3140
  • [30] A Multi-attribute Probabilistic Matrix Factorization Model for Personalized Recommendation
    Tan, Feng
    Li, Li
    Zhang, Zeyu
    Guo, Yunlong
    WEB-AGE INFORMATION MANAGEMENT (WAIM 2015), 2015, 9098 : 535 - 539