ON THE COEFFICIENTS APPEARING IN THE EXPANSION OF MELNIKOV FUNCTIONS IN HOMOCLINIC BIFURCATIONS

被引:5
|
作者
韩茂安
叶彦谦
机构
[1] 南京大学
[2] 上海交通大学
关键词
Homoclinic bifurcation; Melnikov function;
D O I
暂无
中图分类号
O174.53 [代数函数论];
学科分类号
摘要
Consideraplanarperturbedsystemoftheformx=Hy+εf(x,y),y=-Hx+εg(x,y)(1)whereH,f,garefunctionsofclasC∞.Asumeforε=0(1)tohaveahomoc...
引用
收藏
页码:58 / 64
页数:7
相关论文
共 50 条
  • [32] Homoclinic bifurcations in Chua's circuit
    Kahan, S
    Sicardi-Schifino, AC
    PHYSICA A, 1999, 262 (1-2): : 144 - 152
  • [33] HOMOCLINIC BIFURCATIONS IN NORMAL-DIMENSIONS
    FOWLER, AC
    STUDIES IN APPLIED MATHEMATICS, 1990, 83 (03) : 193 - 209
  • [34] Homoclinic bifurcations in radiating diffusion flames
    Kavousanakis, Michail E.
    Russo, Lucia
    Marra, Francesco Saverio
    Siettos, Constantinos
    COMBUSTION THEORY AND MODELLING, 2013, 17 (01) : 40 - 52
  • [35] Conservative homoclinic bifurcations and some applications
    Anton Gorodetski
    Vadim Kaloshin
    Proceedings of the Steklov Institute of Mathematics, 2009, 267 : 76 - 90
  • [36] Homoclinic bifurcations in heterogeneous market models
    Foroni, I
    Gardini, L
    CHAOS SOLITONS & FRACTALS, 2003, 15 (04) : 743 - 760
  • [37] Homoclinic loop bifurcations on a Mobius band
    Guimond, LS
    NONLINEARITY, 1999, 12 (01) : 59 - 78
  • [38] BIFURCATIONS OF HOMOCLINIC ORBITS IN BIMODAL MAPS
    HANSEN, KT
    PHYSICAL REVIEW E, 1994, 50 (02): : 1653 - 1656
  • [39] Homoclinic bifurcations in a planar dynamical system
    Giannakopoulos, F
    Küpper, T
    Zou, YK
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2001, 11 (04): : 1183 - 1191
  • [40] Homoclinic bifurcations in reversible Hamiltonian systems
    Francisco, Gerson
    Fonseca, Andre
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 176 (02) : 654 - 661