ON THE COEFFICIENTS APPEARING IN THE EXPANSION OF MELNIKOV FUNCTIONS IN HOMOCLINIC BIFURCATIONS

被引:5
|
作者
韩茂安
叶彦谦
机构
[1] 南京大学
[2] 上海交通大学
关键词
Homoclinic bifurcation; Melnikov function;
D O I
暂无
中图分类号
O174.53 [代数函数论];
学科分类号
摘要
Consideraplanarperturbedsystemoftheformx=Hy+εf(x,y),y=-Hx+εg(x,y)(1)whereH,f,garefunctionsofclasC∞.Asumeforε=0(1)tohaveahomoc...
引用
收藏
页码:58 / 64
页数:7
相关论文
共 50 条
  • [1] MELNIKOV VECTOR AND HOMOCLINIC BIFURCATIONS IN A DEGENERATE CASE
    曾唯尧
    周玉波
    张卫国
    ActaMathematicaScientia, 1998, (S1) : 105 - 113
  • [2] Computation of expansion coefficients of Melnikov functions near a nilpotent center
    Yang, Junmin
    Han, Maoan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (06) : 1957 - 1974
  • [3] Melnikov functions and homoclinic orbits for functional differential equations
    Su, X
    DIFFERENTIAL EQUATIONS AND CONTROL THEORY, 1996, 176 : 309 - 314
  • [4] ASYMPTOTIC EXPANSIONS OF MELNIKOV FUNCTIONS AND LIMIT CYCLE BIFURCATIONS
    Han, Maoan
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (12):
  • [5] Nonsmooth homoclinic orbits, Melnikov functions and chaos in discontinuous systems
    Battelli, F.
    Feckan, M.
    PHYSICA D-NONLINEAR PHENOMENA, 2012, 241 (22) : 1962 - 1975
  • [6] Melnikov functions for period annulus, nondegenerate centers, heteroclinic and homoclinic cycles
    Li, WG
    Llibre, J
    Zhang, X
    PACIFIC JOURNAL OF MATHEMATICS, 2004, 213 (01) : 49 - 77
  • [7] Melnikov functions and limit cycle bifurcations for a class of piecewise Hamiltonian systems
    Hou, Wenwen
    Han, Maoan
    AIMS MATHEMATICS, 2024, 9 (02): : 3957 - 4013
  • [8] A practical use of the Melnikov homoclinic method
    Castilho, Cesar
    Marchesin, Marcelo
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (11)
  • [9] Bifocal homoclinic bifurcations
    Laing, C
    Glendinning, P
    PHYSICA D, 1997, 102 (1-2): : 1 - 14
  • [10] Imperfect homoclinic bifurcations
    Glendinning, P
    Abshagen, J
    Mullin, T
    PHYSICAL REVIEW E, 2001, 64 (03):