Time-periodic solutions of the Einstein's field equations Ⅲ:physical singularities

被引:1
|
作者
KONG DeXing1
2Department of Mathematics
3Center of Mathematical Sciences
机构
基金
中国国家自然科学基金;
关键词
Einstein’s field equations; time-periodic solution; geometric singularity; physical singularity; Weyl scalar;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
In this paper we construct a new time-periodic solution of the vacuum Einstein’s field equations, this solution possesses physical singularities, i.e., the norm of the solution’s Riemann curvature tensor takes the infinity at some points. We show that this solution is intrinsically time-periodic and describes a time-periodic universe with the "time-periodic physical singularity". By calculating the Weyl scalars of this solution, we investigate new physical phenomena and analyze new singularities for this universal model.
引用
收藏
页码:23 / 33
页数:11
相关论文
共 50 条
  • [41] Strong time-periodic solutions to the bidomain equations with arbitrary large forces
    Giga, Yoshikazu
    Kajiwara, Naoto
    Kress, Klaus
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2019, 47 : 398 - 413
  • [42] WEAK TIME-PERIODIC SOLUTIONS TO THE COMPRESSIBLE NAVIER-STOKES EQUATIONS
    Cai, Hong
    Tan, Zhong
    ACTA MATHEMATICA SCIENTIA, 2016, 36 (02) : 499 - 513
  • [43] Exact solutions of Einstein's field equations
    Negi, P. S.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2006, 45 (09) : 1695 - 1713
  • [44] Exact Solutions of Einstein's Field Equations
    P. S. Negi
    International Journal of Theoretical Physics, 2006, 45 : 1684 - 1702
  • [45] Periodic solutions of Rayleigh equations with singularities
    Zaihong Wang
    Tiantian Ma
    Boundary Value Problems, 2015
  • [46] Periodic solutions of Rayleigh equations with singularities
    Wang, Zaihong
    Ma, Tiantian
    BOUNDARY VALUE PROBLEMS, 2015,
  • [47] STABILIZABILITY OF TIME-PERIODIC PARABOLIC EQUATIONS
    LUNARDI, A
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1991, 29 (04) : 810 - 828
  • [48] Heteroclinic tangles in time-periodic equations
    Chen, Fengjuan
    Oksasoglu, Ali
    Wang, Qiudong
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (03) : 1137 - 1171
  • [49] On asymptotically flat solutions of Einstein's equations periodic in time: II. Spacetimes with scalar-field sources
    Bicak, J.
    Scholtz, M.
    Tod, P.
    CLASSICAL AND QUANTUM GRAVITY, 2010, 27 (17)
  • [50] On asymptotically flat solutions of Einstein's equations periodic in time: I. Vacuum and electrovacuum solutions
    Bicak, J.
    Scholtz, M.
    Tod, P.
    CLASSICAL AND QUANTUM GRAVITY, 2010, 27 (05)