Non-Nehari manifold method for asymptotically periodic Schrdinger equations

被引:2
|
作者
TANG XianHua [1 ]
机构
[1] School of Mathematics and Statistics, Central South University
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
Schrdinger equation; non-Nehari manifold method; asymptotically periodic; ground state solutions of Nehari-Pankov type;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
We consider the semilinear Schrdinger equation-△u + V(x)u = f(x, u), x ∈ RN,u ∈ H 1(RN),where f is a superlinear, subcritical nonlinearity. We mainly study the case where V(x) = V0(x) + V1(x),V0∈ C(RN), V0(x) is 1-periodic in each of x1, x2,..., x N and sup[σ(-△ + V0) ∩(-∞, 0)] < 0 < inf[σ(-△ +V0)∩(0, ∞)], V1∈ C(RN) and lim|x|→∞V1(x) = 0. Inspired by previous work of Li et al.(2006), Pankov(2005)and Szulkin and Weth(2009), we develop a more direct approach to generalize the main result of Szulkin and Weth(2009) by removing the "strictly increasing" condition in the Nehari type assumption on f(x, t)/|t|. Unlike the Nahari manifold method, the main idea of our approach lies on finding a minimizing Cerami sequence for the energy functional outside the Nehari-Pankov manifold N0 by using the diagonal method.
引用
收藏
页码:715 / 728
页数:14
相关论文
共 50 条
  • [31] ON THE PERIODIC SOLITON SOLUTIONS FOR FRACTIONAL SCHRÖDINGER EQUATIONS
    Ali, Rashid
    Kumar, Devendra
    Akguel, Ali
    Altalbe, Ali
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2024, 32 (07N08)
  • [32] Multidomain spectral method for Schrödinger equations
    Mira Birem
    Christian Klein
    Advances in Computational Mathematics, 2016, 42 : 395 - 423
  • [33] Periodic wavetrains for systems of coupled nonlinear Schrödinger equations
    Kwok W Chow
    Derek WC Lai
    Pramana, 2001, 57 : 937 - 952
  • [34] Stationary States for Nonlinear Schrödinger Equations with Periodic Potentials
    Reika Fukuizumi
    Andrea Sacchetti
    Journal of Statistical Physics, 2014, 156 : 707 - 738
  • [35] Multiple solutions to logarithmic Schrödinger equations with periodic potential
    Marco Squassina
    Andrzej Szulkin
    Calculus of Variations and Partial Differential Equations, 2015, 54 : 585 - 597
  • [36] Multibump solutions for discrete periodic nonlinear Schrödinger equations
    Shiwang Ma
    Zhi-Qiang Wang
    Zeitschrift für angewandte Mathematik und Physik, 2013, 64 : 1413 - 1442
  • [37] Solutions for Discrete Periodic Schrödinger Equations with Spectrum 0
    Minbo Yang
    Wenxiong Chen
    Yanheng Ding
    Acta Applicandae Mathematicae, 2010, 110 : 1475 - 1488
  • [38] Gap Solitons in Periodic Discrete Schrödinger Equations with Nonlinearity
    Haiping Shi
    Acta Applicandae Mathematicae, 2010, 109 : 1065 - 1075
  • [39] Oscillations in space-periodic nonlinear Schrödinger equations
    S.B. Kuksin
    Geometric & Functional Analysis GAFA, 1997, 7 : 338 - 363
  • [40] New Results for Periodic Discrete Nonlinear SchröDinger Equations
    Xu, Xiaoliang
    Chen, Huiwen
    Ouyang, Zigen
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (05) : 5768 - 5780