On k-Star Arboricity of Graphs

被引:0
|
作者
陶昉昀 [1 ,2 ]
林文松 [1 ]
机构
[1] Department of Mathematics,Southeast University
[2] College of Science,College of Science,Nanjing Forestry University
基金
中国国家自然科学基金;
关键词
star arboricity; k-star arboricity; linear k-arboricity; cubic graphs; subcubic graphs;
D O I
10.19884/j.1672-5220.2014.03.021
中图分类号
O157.5 [图论];
学科分类号
摘要
A star forest is a forest whose components are stars. The star arboricity of a graph G,denoted by sa( G),is the minimum number of star forests needed to decompose G. Let k be a positive integer. A k-star forest is a forest whose components are stars of order at most k + 1. The k-star arboricity of a graph G,denoted by sak( G),is the minimum number of k-star forests needed to decompose G. In this paper,it is proved that if any two vertices of degree 3 are nonadjacent in a subcubic graph G then sa2( G) ≤2.For general subcubic graphs G, a polynomial-time algorithm is described to decompose G into three 2-star forests. For a tree T andΔ( a positive integer k, T)it is proved that≤ sakk( T) ≤Δ( T)- 1+ 1,where Δ( T) is the maximum degree of T.kMoreover,a linear-time algorithm is designed to determine whether sak( T) ≤m for any tree T and any positive integers m and k.
引用
收藏
页码:335 / 338
页数:4
相关论文
共 50 条
  • [1] THE STAR ARBORICITY OF GRAPHS
    ALGOR, I
    ALON, N
    DISCRETE MATHEMATICS, 1989, 75 (1-3) : 11 - 22
  • [2] Star arboricity of graphs
    Hakimi, SL
    Mitchem, J
    Schmeichel, E
    DISCRETE MATHEMATICS, 1996, 149 (1-3) : 93 - 98
  • [3] RARE DECAY MODES OF K-STAR(1420) AND K-STAR(892)
    JONGEJANS, B
    BLOKZIJL, R
    KLUYVER, JC
    MASSARO, GGG
    VOORTHUIS, H
    CERRADA, M
    GAVILLET, P
    HEMINGWAY, RJ
    LOSTY, MJ
    ENGELEN, JJ
    METZGER, WJ
    POLS, CLA
    FOSTER, B
    MCDOWELL, L
    WELLS, J
    NUCLEAR PHYSICS B, 1978, 139 (04) : 383 - 393
  • [4] K-STAR RESONANCE
    KANAZAWA, A
    TOKUDA, N
    PROGRESS OF THEORETICAL PHYSICS, 1963, 30 (01): : 142 - 143
  • [5] Steiner tree in k-star caterpillar convex bipartite graphs: a dichotomy
    D. H. Aneesh
    A. Mohanapriya
    P. Renjith
    N. Sadagopan
    Journal of Combinatorial Optimization, 2022, 44 : 1221 - 1247
  • [6] Steiner tree in k-star caterpillar convex bipartite graphs: a dichotomy
    Aneesh, D. H.
    Mohanapriya, A.
    Renjith, P.
    Sadagopan, N.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2022, 44 (02) : 1221 - 1247
  • [7] On incidence coloring and star arboricity of graphs
    Guiduli, B
    DISCRETE MATHEMATICS, 1997, 163 (1-3) : 275 - 278
  • [8] The Polytope of k-star Densities
    Rauh, Johannes
    ELECTRONIC JOURNAL OF COMBINATORICS, 2017, 24 (01):
  • [9] Fractional incidence coloring and star arboricity of graphs
    Yang, Daqing
    ARS COMBINATORIA, 2012, 105 : 213 - 224
  • [10] Linear arboricity and linear k-arboricity of regular graphs
    Alon, N
    Teague, VJ
    Wormald, NC
    GRAPHS AND COMBINATORICS, 2001, 17 (01) : 11 - 16