A LN2-based cooling system for a next-generation liquid xenon dark matter detector

被引:0
|
作者
Karl Ludwig Giboni [1 ,2 ]
Pratibha Juyal [1 ,2 ]
Elena Aprile [3 ]
Yun Zhang [3 ]
Junji Naganoma [4 ]
机构
[1] INPAC and School of Physics and Astronomy, Shanghai Jiao Tong University
[2] Shanghai Laboratory for Particle and Cosmology
[3] Columbia Astrophysics Lab and Physics Department,Columbia University
[4] Department of Physics and Astronomy, Rice University
关键词
D O I
暂无
中图分类号
O572.212 [];
学科分类号
070202 ;
摘要
In recent years, cooling technology for liquid xenon(LXe) detectors has advanced driven by the development of dark matter(DM) detectors with target mass in the 100–1000 kg range. The next generation of DM detectors based on LXe will be in the 50,000 kg(50 t)range requiring more than 1 k W of cooling power. Most of the prior cooling methods become impractical at this level.For cooling a 50 t scale LXe detector, a method is proposed in which liquid nitrogen(LN2) in a small local reservoir cools the xenon gas via a cold finger. The cold finger incorporates a heating unit to provide temperature regulation. The proposed cooling method is simple, reliable, and suitable for the required long-term operation for a rare event search. The device can be easily integrated into present cooling systems, for example the ‘‘Cooling Bus’ ’employed for the Panda X I and II experiments. It is still possible to cool indirectly with no part of the cooling or temperature control system getting in direct contact with the clean xenon in the detector. Also, the cooling device can be mounted at a large distance, i.e., the detector is cooled remotely from a distance of 5–10 m. The method was tested in a laboratory setup at Columbia University to carry out different measurements with a small LXe detector and behaved exactly as predicted.
引用
收藏
页码:26 / 36
页数:11
相关论文
共 50 条
  • [31] Performance and fundamental processes at low energy in a two-phase liquid xenon dark matter detector
    Shutt, T.
    Dahl, C. E.
    Kwong, J.
    Bolozdynya, A.
    Brusov, P.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2007, 579 (01): : 451 - 453
  • [32] Self-shielding effect of a single phase liquid xenon detector for direct dark matter search
    Minamino, A.
    Abe, K.
    Ashie, Y.
    Hosaka, J.
    Ishihara, K.
    Kobayashi, K.
    Koshio, Y.
    Mitsuda, C.
    Moriyama, S.
    Nakahata, M.
    Nakajima, Y.
    Namba, T.
    Ogawa, H.
    Sekiya, H.
    Shiozawa, M.
    Suzuki, Y.
    Takeda, A.
    Takeuchi, Y.
    Taki, K.
    Ueshima, K.
    Ebizuka, Y.
    Ota, A.
    Suzuki, S.
    Hagiwara, H.
    Hashimoto, Y.
    Kamada, S.
    Kikuchi, M.
    Kobayashi, N.
    Nagase, T.
    Nakamura, S.
    Tomita, K.
    Uchida, Y.
    Fukuda, Y.
    Sato, T.
    Nishijima, K.
    Maruyama, T.
    Motoki, D.
    Itow, Y.
    Kim, Y. D.
    Lee, J. I.
    Moon, S. H.
    Lim, K. E.
    Cravens, J. P.
    Smy, M. B.
    ASTROPARTICLE PHYSICS, 2012, 35 (10) : 609 - 614
  • [33] Performance and fundamental processes at low energy in a two-phase liquid xenon dark matter detector
    Shutt, T.
    Dahl, C. E.
    Kwong, J.
    Bolozdynya, A.
    Brusova, P.
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2007, 173 : 160 - 163
  • [34] Liquid-Based Memory Devices for Next-Generation Computing
    Kim, Dongshin
    Lee, Jang-Sik
    ACS APPLIED ELECTRONIC MATERIALS, 2023, 5 (02) : 664 - 673
  • [35] New opportunities at the next-generation neutrino experiments I: BSM neutrino physics and dark matter
    Arguelles, C. A.
    Aurisano, A. J.
    Batell, B.
    Berger, J.
    Bishai, M.
    Boschi, T.
    Byrnes, N.
    Chatterjee, A.
    Chodos, A.
    Coan, T.
    Cui, Y.
    de Gouvea, A.
    Denton, P. B.
    De Roeck, A.
    Flanagan, W.
    Forero, D., V
    Gandrajula, R. P.
    Hatzikoutelis, A.
    Hostert, M.
    Jones, B.
    Kayser, B. J.
    Kelly, K. J.
    Kim, D.
    Kopp, J.
    Kubik, A.
    Lang, K.
    Lepetic, I
    Machado, P. A. N.
    Moura, C. A.
    Olness, F.
    Park, J. C.
    Pascoli, S.
    Prakash, S.
    Rogers, L.
    Safa, I
    Schneider, A.
    Scholberg, K.
    Shin, S.
    Shoemaker, I. M.
    Sinev, G.
    Smithers, B.
    Sousa, A.
    Sui, Y.
    Takhistov, V
    Thomas, J.
    Todd, J.
    Tsai, Y-D
    Tsai, Y-T
    Yu, J.
    Zhang, C.
    REPORTS ON PROGRESS IN PHYSICS, 2020, 83 (12)
  • [36] Getting the astrophysics and particle physics of dark matter out of next-generation direct detection experiments
    Peter, Annika H. G.
    PHYSICAL REVIEW D, 2010, 81 (08):
  • [37] Next-Generation Liquid Metal Batteries Based on the Chemistry of Fusible Alloys
    Ding, Yu
    Guo, Xuelin
    Yu, Guihua
    ACS CENTRAL SCIENCE, 2020, 6 (08) : 1355 - 1366
  • [38] Next-Generation Landing System Based on Combined Passive Radar
    Shevgunov, Timofey
    Dubrovin, Aleksandr
    Nikishov, Viktor
    2014 XXXITH URSI GENERAL ASSEMBLY AND SCIENTIFIC SYMPOSIUM (URSI GASS), 2014,
  • [39] Development of the next-generation steering system based on biomechanical control
    Tajima, Takamitsu
    Journal of the Institute of Electrical Engineers of Japan, 2012, 132 (09): : 622 - 625
  • [40] DARKFLUX: A new tool to analyze indirect-detection spectra of next-generation dark matter models
    Boveia, Antonio
    Carpenter, Linda M.
    Gao, Boyu
    Murphy, Taylor
    Tolley, Emma
    PHYSICS OF THE DARK UNIVERSE, 2022, 36