Nanoencapsulation of arsenate with nanoscale zero-valent iron(nZVI):A 3D perspective

被引:5
|
作者
Airong Liu
Wei Wang
Jing Liu
Rongbing Fu
Wei-xian Zhang
机构
[1] State Key Laboratory for Pollution Control and Resource Reuse,College of Environmental Science and Engineering,Tongji University
[2] Shanghai Institute of Pollution Control and Ecological Security
[3] School of Chemical Science and Engineering,Tongji University
基金
中国国家自然科学基金;
关键词
Arsenate; Nanoscale zero-valent iron; Spherical aberration corrected scanning; transmission electron microscopy; X-ray energy-dispersive spectroscopy; Electron energy-loss spectroscopy; X-ray photoelectron spectroscopy;
D O I
暂无
中图分类号
O647.11 [表面化学(界面化学)];
学科分类号
摘要
The principal forces driving the efficient enrichment and encapsulation of arsenic(As) into nanoscale zero-valent iron(nZVI) are the disordered arrangement of the atoms and the gradient chemical potentials within the core-shell interface. The chemical compositions and the fine structure of nZVI are characterized with a combination of spherical aberration corrected scanning transmission electron microscopy(Cs-STEM), X-ray energy-dispersive spectroscopy(XEDS), electron energy loss spectroscopy(EELS), and high-resolution X-ray photoelectron spectroscopy(HR-XPS). Atomically resolved EELS at the oxygen K-edge unfolds that the Fe species in nZVI are well stratified from Fe(Ⅲ) oxides in the outermost periphery to a mixed Fe(Ⅲ)/Fe(Ⅱ) interlayer, then Fe(Ⅱ) oxide and the pure Fe(0) phase. Reactions between As(Ⅴ)and nZVI suggest that a well-structured local redox gradient exists within the shell layer, which serves as a thermodynamically favorable conduit for electron transfer from the iron core to the surface-bound As(Ⅴ). HR-XPS with ion sputtering shows that arsenic species shift from As(Ⅴ), As(Ⅲ)/As(Ⅴ) to As(Ⅴ)/As(Ⅲ)/As(0) from the iron oxide shell–water interface to the Fe(0) core. Results reinforce previous work on the efficacy of nZVI for removing and remediating arsenic while the analytical TEM methods are also applicable to the study of environmental interfaces and surface chemistry.
引用
收藏
页码:1641 / 1648
页数:8
相关论文
共 50 条
  • [21] Impact of the morphology and reactivity of nanoscale zero-valent iron (NZVI) on dechlorinating bacteria
    Ronavari, Andrea
    Balazs, Margit
    Tolmacsov, Peter
    Molnar, Csaba
    Kiss, Istvan
    Kukovecz, Akos
    Konya, Zoltan
    WATER RESEARCH, 2016, 95 : 165 - 173
  • [22] Preparation and application of modified nanoscale zero-valent iron (nZVI) in groundwater: a review
    Zhang Y.
    Wang J.
    Jing Q.
    Li Y.
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2021, 40 (08): : 4486 - 4496
  • [23] Phosphorous removal by nanoscale zero-valent iron (nZVI) and chitosan-coated nZVI (CS-nZVI)
    Shanableh, A.
    Darwish, N.
    Bhattacharjee, S.
    Al-Khayyat, G.
    Khalil, M.
    Mousa, M.
    Tayara, A.
    Al-Samarai, M.
    DESALINATION AND WATER TREATMENT, 2020, 184 : 282 - 291
  • [24] Degradation of trichloroethene by nanoscale zero-valent iron (nZVI) and nZVI activated persulfate in the absence and presence of EDTA
    Dong, Haoran
    He, Qi
    Zeng, Guangming
    Tang, Lin
    Zhang, Lihua
    Xie, Yankai
    Zeng, Yalan
    Zhao, Feng
    CHEMICAL ENGINEERING JOURNAL, 2017, 316 : 410 - 418
  • [25] Core-Shell Nature of Nanoscale Zero-Valent Iron (nZVI) for Arsenate Removal: A Case of Structure-Activity Relationship
    Liu, Airong
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [26] Heavy metal removal using nanoscale zero-valent iron (nZVI): Theory and application
    Li, Shaolin
    Wang, Wei
    Liang, Feipeng
    Zhang, Wei-Xian
    JOURNAL OF HAZARDOUS MATERIALS, 2017, 322 : 163 - 171
  • [27] Surface Chemistry and Phase Transformation of Nanoscale Zero-Valent Iron (nZVI) in Aquatic Media
    Liu Jing
    Gu Tianhang
    Wang Wei
    Liu Ai-rong
    Zhang Wei-xian
    ACTA CHIMICA SINICA, 2019, 77 (02) : 121 - 129
  • [28] In situ characterization of aggregates of nanoscale zero-valent iron (nZVI) in water: an engineering aspect
    Wang, Weiyi
    Li, Jianhua
    Li, Shaolin
    Zhang, Wei-xian
    ENVIRONMENTAL SCIENCE-NANO, 2022, 9 (09) : 3331 - 3342
  • [29] Enhanced transport of polyelectrolyte stabilized nanoscale zero-valent iron (nZVI) in porous media
    Jiemvarangkul, Pijit
    Zhang, Wei-xian
    Lien, Hsing-Lung
    CHEMICAL ENGINEERING JOURNAL, 2011, 170 (2-3) : 482 - 491
  • [30] Stabilization of nanoscale zero-valent iron in water with mesoporous carbon (nZVI@MC)
    Shi, Junming
    Wang, Jing
    Wang, Wei
    Teng, Wei
    Zhang, Wei-xian
    JOURNAL OF ENVIRONMENTAL SCIENCES, 2019, 81 : 28 - 33