Prediction of Rotor Spun Yarn Strength Using Adaptive Neuro-fuzzy Inference System and Linear Multiple Regression Methods

被引:1
|
作者
狄欧
王新厚
机构
[1] China
[2] China Key Laboratory of Science & Technology of Eco-Textile
[3] College of Textiles Donghua University
[4] Ministry of Education
[5] Shanghai 200051
[6] Shanghai 201620
关键词
ANFIS; yarn strength; rotor spun yarn; properties of fiber;
D O I
10.19884/j.1672-5220.2008.01.010
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a comparison study of two models for predicting the strength of rotor spun cotton yarns from fiber properties.The adaptive neuro-fuzzy system inference(ANFIS) and Multiple Linear Regression models are used to predict the rotor spun yarn strength.Fiber properties and yarn count are used as inputs to train the two models and the count-strength-product(CSP) was the target.The predictive performances of the two models are estimated and compared.We found that the ANFIS has a better predictive power in comparison with linear multiple regression model.The impact of each fiber property is also illustrated.
引用
收藏
页码:48 / 52
页数:5
相关论文
共 50 条
  • [41] Prediction of amount of imports based on adaptive neuro-fuzzy inference system
    Chang, Zhipeng
    Liu, Liping
    Li, Zhiping
    2007 INTERNATIONAL CONFERENCE ON INTELLIGENT PERVASIVE COMPUTING, PROCEEDINGS, 2007, : 437 - 440
  • [42] Discussion of 'Prediction of concrete elastic modulus using adaptive neuro-fuzzy inference system'
    Erdik, Tarkan
    CIVIL ENGINEERING AND ENVIRONMENTAL SYSTEMS, 2009, 26 (02) : 157 - 158
  • [43] Prediction of concrete elastic modulus using adaptive neuro-fuzzy inference system - Rejoinder
    Aydin, Abdulkadir Cueneyt
    CIVIL ENGINEERING AND ENVIRONMENTAL SYSTEMS, 2007, 24 (04) : 301 - 302
  • [44] SOYMILK ISOFLAVONE CONVERSION PREDICTION BY ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM
    Chiang, H. -H.
    Chen, K. -I
    Liu, C. -T.
    Hsieh, S. -C.
    Cheng, K. -C.
    TRANSACTIONS OF THE ASABE, 2015, 58 (06) : 1853 - 1860
  • [45] Prediction of Dengue Incidence in DKI Jakarta Using Adaptive Neuro-Fuzzy Inference System
    Hasanah, Hajratul
    Hertono, Gatot Fatwanto
    Sarwinda, Devvi
    INTERNATIONAL CONFERENCE ON SCIENCE AND APPLIED SCIENCE (ICSAS2020), 2020, 2296
  • [46] Soymilk isoflavone conversion prediction by adaptive neuro-fuzzy inference system
    Department of Electrical Engineering, Fu Jen Catholic University, New Taipei City, Taiwan
    不详
    不详
    Trans. ASABE, 6 (1853-1860):
  • [47] Application of the adaptive neuro-fuzzy inference system for prediction of soil liquefaction
    Xinhua Xue
    Xingguo Yang
    Natural Hazards, 2013, 67 : 901 - 917
  • [48] An Energy Prediction Method using Adaptive Neuro-Fuzzy Inference System and Genetic Algorithms
    Kampouropoulos, K.
    Cardenas, J. J.
    Giacometto, F.
    Romeral, L.
    2013 IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2013,
  • [49] Application of Adaptive Neuro-fuzzy Inference System for road accident prediction
    Mehdi Hosseinpour
    Ahmad Shukri Yahaya
    Seyed Mohammadreza Ghadiri
    Joewono Prasetijo
    KSCE Journal of Civil Engineering, 2013, 17 : 1761 - 1772
  • [50] Application of Adaptive Neuro-Fuzzy Inference System in Flammability Parameter Prediction
    Mensah, Rhoda Afriyie
    Xiao, Jie
    Das, Oisik
    Jiang, Lin
    Xu, Qiang
    Alhassan, Mohammed Okoe
    POLYMERS, 2020, 12 (01)