Prediction of Rotor Spun Yarn Strength Using Adaptive Neuro-fuzzy Inference System and Linear Multiple Regression Methods

被引:1
|
作者
狄欧
王新厚
机构
[1] China
[2] China Key Laboratory of Science & Technology of Eco-Textile
[3] College of Textiles Donghua University
[4] Ministry of Education
[5] Shanghai 200051
[6] Shanghai 201620
关键词
ANFIS; yarn strength; rotor spun yarn; properties of fiber;
D O I
10.19884/j.1672-5220.2008.01.010
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a comparison study of two models for predicting the strength of rotor spun cotton yarns from fiber properties.The adaptive neuro-fuzzy system inference(ANFIS) and Multiple Linear Regression models are used to predict the rotor spun yarn strength.Fiber properties and yarn count are used as inputs to train the two models and the count-strength-product(CSP) was the target.The predictive performances of the two models are estimated and compared.We found that the ANFIS has a better predictive power in comparison with linear multiple regression model.The impact of each fiber property is also illustrated.
引用
收藏
页码:48 / 52
页数:5
相关论文
共 50 条
  • [1] Prediction of rotor spun yarn strength using adaptive neuro-fuzzy inference system and linear multiple regression methods
    College of Textiles, Donghua University, Shanghai 201620, China
    不详
    J. Donghua Univ., 2008, 1 (48-52):
  • [2] Prediction of rotor spun yarn strength from cotton fiber properties using adaptive neuro-fuzzy inference system method
    Deogratias Nurwaha
    Xin Hou Wang
    Fibers and Polymers, 2010, 11 : 97 - 100
  • [3] Prediction of Rotor Spun Yarn Strength from Cotton Fiber Properties Using Adaptive Neuro-Fuzzy Inference System Method
    Nurwaha, Deogratias
    Wang, Xin Hou
    FIBERS AND POLYMERS, 2010, 11 (01) : 97 - 100
  • [4] Using adaptive neuro-fuzzy inference system and multiple linear regression to estimate orange taste
    Mokarram, Marzieh
    Amin, Hosein
    Khosravi, Mohammad R.
    FOOD SCIENCE & NUTRITION, 2019, 7 (10): : 3176 - 3184
  • [5] Modeling of Lycra/Cotton Core Spun Yarn for Strength and Elastic Recovery Using Adaptive Neuro-Fuzzy Inference System (ANFIS)
    Nurussaba K.
    Sinha A.
    Bhatia D.
    Sachdeva A.
    Sinha S.K.
    Journal of The Institution of Engineers (India): Series E, 2024, 105 (01) : 67 - 75
  • [6] APPLICATION OF MULTIPLE REGRESSION AND ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM FOR PREDICTION OF SURFACE ROUGHNESS IN EDM
    Baraskar, S. S.
    Banwait, S. S.
    PROCEEDINGS OF THE ASME INTERNATIONAL MANUFACTURING SCIENCE AND ENGINEERING CONFERENCE, 2012, 2012, : 317 - 325
  • [7] Seizure Prediction Using Adaptive Neuro-Fuzzy Inference System
    Rabbi, Ahmed F.
    Azinfar, Leila
    Fazel-Rezai, Reza
    2013 35TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2013, : 2100 - 2103
  • [8] Shear strength prediction of RC beams using adaptive neuro-fuzzy inference system
    Naderpour, H.
    Mirrashid, M.
    SCIENTIA IRANICA, 2020, 27 (02) : 657 - 670
  • [9] Modeling of cotton yarn hairiness using adaptive neuro-fuzzy inference system
    Majumdar, Abhijit
    INDIAN JOURNAL OF FIBRE & TEXTILE RESEARCH, 2010, 35 (02) : 121 - 127
  • [10] Using neuro-fuzzy for prediction ring spun yarn strength from cotton fibers properties
    Shams-Nateri, A
    ISC'2005: 3rd Industrial Simulation Conference 2005, 2005, : 376 - 379