GENERATORS OF VECTOR FIELDS AND TIME DEPENDENT SYMMETRIES OF EVOLUTION EQUATIONS

被引:0
|
作者
马文秀
机构
[1] Fudan University
[2] PRC
[3] Shanghai 200433
[4] Institute of Mathematics
基金
中国国家自然科学基金;
关键词
Lie derivative; hereditary symmetry; generator; time dependent symmetry;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the conception of generators of vector fields with the general characteris-tic is introduced and the correspondence with time dependent symmetries of evolution equa-tions is provided along with applications to special evolution equations. Furthermore, atheoretical approach for generating time polynomial dependent symmetries of hierarchies ofevolution equations is proposed through hereditary symmetries.
引用
收藏
页码:769 / 782
页数:14
相关论文
共 50 条
  • [21] Space regularity for evolution operators modeled on Hormander vector fields with time dependent measurable coefficients
    Bramanti, Marco
    JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (02) : 1419 - 1448
  • [22] INFINITELY MANY COMMUTING SYMMETRIES AND CONSTANTS OF MOTION IN INVOLUTION FOR EXPLICITLY TIME-DEPENDENT EVOLUTION-EQUATIONS
    OEVEL, W
    FOKAS, AS
    JOURNAL OF MATHEMATICAL PHYSICS, 1984, 25 (04) : 918 - 922
  • [23] Nonlinear Degenerate Parabolic Equations with Time-dependent Singular Potentials for Baouendi–Grushin Vector Fields
    Jun Qiang HAN
    Qian Qiao GUO
    Acta Mathematica Sinica, 2015, 31 (01) : 123 - 139
  • [24] Nonlinear Degenerate Parabolic Equations with Time-dependent Singular Potentials for Baouendi–Grushin Vector Fields
    Jun Qiang HAN
    Qian Qiao GUO
    Acta Mathematica Sinica,English Series, 2015, (01) : 123 - 139
  • [25] Computation of distinguished trajectories in time dependent vector fields
    Sun, Hengyi
    Fan, Yangyu
    Jia, Meng
    Li, Huimin
    Zhang, Jing
    Jisuan Wuli/Chinese Journal of Computational Physics, 2011, 28 (04): : 611 - 620
  • [26] CONSERVATION LAWS AND SYMMETRIES OF TIME-DEPENDENT GENERALIZED KDV EQUATIONS
    Anco, Stephen
    Rosa, Maria
    Luz Gandarias, Maria
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2018, 11 (04): : 607 - 615
  • [27] Symmetries and invariants of the oscillator and envelope equations with time-dependent frequency
    Qin, Hong
    Davidson, Ronald C.
    PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS, 2006, 9 (05):
  • [28] Symmetries of Cr-vector Fields on Surfaces
    Bonomo, Wescley
    Rocha, Jorge
    Varandas, Paulo
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2023, 54 (03):
  • [29] Normal Forms of ?-Hamiltonian Vector Fields with Symmetries
    Baptistelli, Patricia H.
    Hernandes, Maria Elenice R.
    Terezio, Eralcilene Moreira
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2023, 54 (03):
  • [30] Attractors and symmetries of vector fields:: The inverse problem
    Gonzalez-Gascon, F.
    Peralta-Salas, D.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 335 (02) : 789 - 807