On the complex structure of symplectic quotients

被引:0
|
作者
Xiangsheng Wang
机构
[1] Beijing International Center for Mathematical Research, Peking University
[2] School of Mathematics, Shandong University
基金
中国博士后科学基金;
关键词
D O I
暂无
中图分类号
O186.1 [微分几何];
学科分类号
0701 ; 070101 ;
摘要
Let K be a compact group. For a symplectic quotient Mof a compact Hamiltonian K?hler Kmanifold, we show that the induced complex structure on Mis locally invariant when the parameter λ varies in Lie(K)~*. To prove such a result, we take two different approaches:(i) use the complex geometry properties of the symplectic implosion construction;(ii) investigate the variation of geometric invariant theory(GIT) quotients.
引用
收藏
页码:2719 / 2742
页数:24
相关论文
共 50 条
  • [21] The K-theory of abelian symplectic quotients
    Harada, Megumi
    Landweber, Gregory D.
    MATHEMATICAL RESEARCH LETTERS, 2008, 15 (01) : 57 - 72
  • [22] THE RICCI CURVATURE OF SYMPLECTIC QUOTIENTS OF FANO MANIFOLDS
    FUTAKI, A
    TOHOKU MATHEMATICAL JOURNAL, 1987, 39 (03) : 329 - 339
  • [23] On symplectic quotients of K3 surfaces
    Çinkir, Z
    Önsiper, H
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2000, 11 (04): : 533 - 538
  • [24] Finite quotients of the pure symplectic braid group
    Kay Magaard
    Karl Strambach
    Helmut Völklein
    Israel Journal of Mathematics, 1998, 106 : 13 - 28
  • [25] Quasimap Floer Cohomology for Varying Symplectic Quotients
    Wilson, Glen
    Woodward, Christopher T.
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2013, 65 (02): : 467 - 480
  • [26] On the (non) existence of symplectic resolutions of linear quotients
    Bellamy, Gwyn
    Schedler, Travis
    MATHEMATICAL RESEARCH LETTERS, 2016, 23 (06) : 1537 - 1564
  • [27] Constructing symplectomorphisms between symplectic torus quotients
    Hans-Christian Herbig
    Ethan Lawler
    Christopher Seaton
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2020, 61 : 581 - 604
  • [28] Constructing symplectomorphisms between symplectic torus quotients
    Herbig, Hans-Christian
    Lawler, Ethan
    Seaton, Christopher
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2020, 61 (04): : 581 - 604
  • [29] A wall-crossing formula for the signature of symplectic quotients
    Metzler, DS
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (08) : 3495 - 3521
  • [30] Hilbert series of symplectic quotients by the 2-torus
    Hans-Christian Herbig
    Daniel Herden
    Christopher Seaton
    Collectanea Mathematica, 2023, 74 : 415 - 442