A DISCRETE CHARACTERIZATION OF HERZ-TYPE TRIEBEL-LIZORKIN SPACES AND ITS APPLICATIONS

被引:0
|
作者
徐景实
机构
[1] Department of Mathematics
[2] Hunan University
[3] Changsha 410082
[4] China Department of Mathematics
[5] Changsha University of Science and Technology
[6] Changsha 410077
关键词
Herz-type space; Triebel-Lizorkin space; discrete characterization; pseudo-differential operator; maximal operator;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
In this paper, the author establishes a discrete characterization of the Herz-type Triebel-Lizorkin spaces which is used to prove the boundedness of pseudo-differential operators on these function spaces.
引用
收藏
页码:412 / 420
页数:9
相关论文
共 50 条
  • [31] The characterization of the Triebel-Lizorkin spaces forp=∞
    Huy-Qui Bui
    Mitchell H. Taibleson
    Journal of Fourier Analysis and Applications, 2000, 6 : 537 - 550
  • [32] HERZ-MORREY TYPE BESOV AND TRIEBEL-LIZORKIN SPACES WITH VARIABLE EXPONENTS
    Dong, Baohua
    Xu, Jingshi
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2015, 9 (01) : 75 - 101
  • [33] The boundedness of commutators of sublinear operators on Herz Triebel-Lizorkin spaces
    Chenglong Fang
    Jiang Zhou
    Indian Journal of Pure and Applied Mathematics, 2021, 52 : 375 - 383
  • [34] TRIEBEL-LIZORKIN SPACES ON SPACES OF HOMOGENEOUS TYPE
    HAN, YS
    STUDIA MATHEMATICA, 1994, 108 (03) : 247 - 273
  • [35] Composition operators on Herz-type Triebel–Lizorkin spaces with application to semilinear parabolic equations
    Douadi Drihem
    Banach Journal of Mathematical Analysis, 2022, 16
  • [36] The boundedness of commutators of sublinear operators on Herz Triebel-Lizorkin spaces
    Fang, Chenglong
    Zhou, Jiang
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2021, 52 (02): : 375 - 383
  • [37] Difference Characterization of Besov and Triebel-Lizorkin Spaces on Spaces of Homogeneous Type
    Wang, Fan
    He, Ziyi
    Yang, Dachun
    Yuan, Wen
    COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2022, 10 (03) : 483 - 542
  • [38] Duality of Besov, Triebel-Lizorkin and Herz spaces with variable exponents
    Izuki M.
    Noi T.
    Rendiconti del Circolo Matematico di Palermo (1952 -), 2014, 63 (2): : 221 - 245
  • [39] HERMITE BESOV AND TRIEBEL-LIZORKIN SPACES AND APPLICATIONS
    Ly, Fu Ken
    Naibo, Virginia
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2023, 66 (01): : 243 - 263
  • [40] Pointwise characterization of Besov and Triebel-Lizorkin spaces on spaces of homogeneous type
    Alvarado, Ryan
    Wang, Fan
    Yang, Dachun
    Yuan, Wen
    STUDIA MATHEMATICA, 2023, 268 (02) : 121 - 166