Transitional wave configurations between Type Ⅲ and Type Ⅳ oblique-shock/bow-shock interactions

被引:0
|
作者
Jun PENG [1 ,2 ]
Shuai LI [1 ,3 ]
Fan YANG [1 ,3 ]
Mingyue LIN [1 ,3 ]
Guilai HAN [1 ,3 ]
Zongmin HU [1 ,3 ]
机构
[1] State Key Laboratory of High-temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences
[2] The System Design Institute of Mechanical-Electrical Engineering
[3] School of Engineering Science, University of Chinese Academy of Sciences
基金
中国国家自然科学基金;
关键词
Shock interactions; Transitional configuration; Aerodynamic heating; Shear layer; Mach interaction;
D O I
暂无
中图分类号
V211 [空气动力学]; V411 [空气动力学];
学科分类号
0801 ; 080103 ; 080104 ;
摘要
The interactions of oblique/bow shock waves are the key flow phenomena restricting the design and aerothermodynamic performance of high-speed vehicles. Type Ⅲ and Type Ⅳ Shock/Shock Interactions(SSIs) have been extensively investigated, as such interactions can induce abnormal aerodynamic heating problems in hypersonic flows of vehicles. The transition process between these two distinct types of shock/shock interactions remains unclear. In the present study, a subclass of shock/shock interaction configuration is revealed and defined as Type Ⅲa. Type Ⅲa interaction can induce much more severe aerodynamic heating than a Type Ⅳ interaction which was ever reported to be the most serious in literature. The intense aerodynamic heating observed in this configuration highlights a new design point for the thermal protection system of hypersonic vehicles. A secondary Mach interaction between shock waves in the supersonic flow path of a Type Ⅲ configuration is demonstrated to be the primary mechanism for such a subclass of shock/shock interaction configuration.
引用
收藏
页码:96 / 106
页数:11
相关论文
共 50 条
  • [21] High resolution LDA measurements in transitional oblique shock wave boundary layer interaction
    Diop, Moussa
    Piponniau, Sebastien
    Dupont, Pierre
    EXPERIMENTS IN FLUIDS, 2019, 60 (04)
  • [22] Shock Oscillation Mechanism of Highly Separated Transitional Shock-Wave/Boundary-Layer Interactions
    Nel, Philipp L.
    Schreyer, Anne-Marie
    Schrijer, Ferry F. J.
    van Oudheusden, Bas W.
    Janke, Christian
    Vasilopoulos, Ilias
    Swoboda, Marius
    AIAA JOURNAL, 2024,
  • [23] Shock wave/transitional boundary-layer interactions in hypersonic flow
    Benay, R.
    Chanetz, B.
    Mangin, B.
    Vandomme, L.
    Perraud, J.
    AIAA JOURNAL, 2006, 44 (06) : 1243 - 1254
  • [24] Shock wave interactions between slender bodies
    Hooseria, S. J.
    Skews, B. W.
    SHOCK WAVES, 2017, 27 (01) : 109 - 126
  • [25] Generation of a secondary shock wave during the oblique collision between a current sheet and a fast magnetosonic shock wave
    Sakai, J. I.
    Tanaka, Y.
    ASTRONOMY & ASTROPHYSICS, 2007, 468 (03) : 1075 - 1081
  • [26] Control of oblique shock wave/boundary layer interactions using plasma actuators
    N. Webb
    C. Clifford
    M. Samimy
    Experiments in Fluids, 2013, 54
  • [27] Hypersonic shock tunnel studies of Edney Type III and IV shock interactions
    Khatta, Abhishek
    Jagadeesh, Gopalan
    AEROSPACE SCIENCE AND TECHNOLOGY, 2018, 72 : 335 - 352
  • [28] Investigation of Unsteady Edney Type IV and VII Shock-Shock Interactions
    Windisch, Christian
    Reinartz, Birgit U.
    Mueller, Siegfried
    AIAA JOURNAL, 2016, 54 (06) : 1846 - 1861
  • [29] Control of oblique shock wave/boundary layer interactions using plasma actuators
    Webb, N.
    Clifford, C.
    Samimy, M.
    EXPERIMENTS IN FLUIDS, 2013, 54 (06)
  • [30] Experiments on transitional shock wave-boundary layer interactions at Mach 5
    Erdem, E.
    Kontis, K.
    Johnstone, E.
    Murray, N. P.
    Steelant, J.
    EXPERIMENTS IN FLUIDS, 2013, 54 (10)