Uniform perfectness of the attractor of bi-Lipschitz IFS

被引:0
|
作者
RUAN Huojun
机构
关键词
uniform perfectness; iterated function systems;
D O I
暂无
中图分类号
TP316 [操作系统];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we prove that the attractor of C1,a bi-Lipschitz IFS in R is uniformly perfect if it is not a singleton. Then we construct an example to show that this does not hold for C1 bi-Lipschitz IFS in Rn.
引用
收藏
页码:433 / 438
页数:6
相关论文
共 50 条
  • [1] Uniform perfectness of the attractor of bi-Lipschitz IFS
    Huojun Ruan
    Yeshun Sun
    Yongcheng Yin
    Science in China Series A, 2006, 49 : 433 - 438
  • [2] Uniform perfectness of the attractor of bi-Lipschitz IFS
    Ruan Huojun
    Sun Yeshun
    Yin Yongcheng
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2006, 49 (04): : 433 - 438
  • [3] BI-LIPSCHITZ CONCORDANCE IMPLIES BI-LIPSCHITZ ISOTOPY
    LUUKKAINEN, J
    MONATSHEFTE FUR MATHEMATIK, 1991, 111 (01): : 35 - 46
  • [4] Transitive Bi-Lipschitz Group Actions and Bi-Lipschitz Parameterizations
    Freeman, David M.
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2013, 62 (01) : 311 - 331
  • [5] Qualitative Lipschitz to bi-Lipschitz decomposition
    Bate, David
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2024, 12 (01):
  • [6] Bi-Lipschitz homeomorphic subanalytic sets have bi-Lipschitz homeomorphic tangent cones
    J. Edson Sampaio
    Selecta Mathematica, 2016, 22 : 553 - 559
  • [7] A CHARACTERIZATION OF BI-LIPSCHITZ EMBEDDABLE METRIC SPACES IN TERMS OF LOCAL BI-LIPSCHITZ EMBEDDABILITY
    Seo, Jeehyeon
    MATHEMATICAL RESEARCH LETTERS, 2011, 18 (06) : 1179 - 1202
  • [8] Bi-Lipschitz parameterization of surfaces
    Mario Bonk
    Urs Lang
    Mathematische Annalen, 2003, 327 : 135 - 169
  • [9] Bi-Lipschitz Bijections of Z
    Benjamini, Itai
    Shamov, Alexander
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2015, 3 (01): : 313 - 324
  • [10] Bi-Lipschitz Sufficiency of Jets
    Valette, Guillaume
    JOURNAL OF GEOMETRIC ANALYSIS, 2009, 19 (04) : 963 - 993