ON TWO PROBLEMS OF LEINDLER

被引:1
|
作者
谢庭藩 [1 ]
机构
[1] Hangzhou University
关键词
In; ON TWO PROBLEMS OF LEINDLER;
D O I
暂无
中图分类号
学科分类号
摘要
Let f(x) be a continuous function with 2π-period i. e. f∈C, and let a/2+ sum form k=1 to ∞ (acoskx+bsinkx) (1) be its Fourier series. S(f)=S(f,x) denotes the n-th partial sum of (1), and E(f), the best approximation of f by trigonometric polynomials of order at most n. L. Leindler in his recent paper raised the following two problems. (Ⅰ) Let p>0 and let r be a nonnegative integer. Is condition
引用
收藏
页码:437 / 442
页数:6
相关论文
共 50 条
  • [21] Stability of some versions of the Prekopa-Leindler inequality
    Ball, Keith M.
    Boeroeczky, Karoly J.
    MONATSHEFTE FUR MATHEMATIK, 2011, 163 (01): : 1 - 14
  • [22] Stability of some versions of the Prékopa–Leindler inequality
    Keith M. Ball
    Károly J. Böröczky
    Monatshefte für Mathematik, 2011, 163 : 1 - 14
  • [23] 关于Leindler的两个问题
    谢庭藩
    科学通报 , 1984, (05) : 257 - 261
  • [24] On Prekopa-Leindler type inequality for Sugeno integral
    Boczek, Michal
    Hutnik, Ondrej
    Kaluszka, Marek
    FUZZY SETS AND SYSTEMS, 2022, 430 : 114 - 125
  • [25] Hardy-Leindler Type Inequalities on Time Scales
    Saker, S. H.
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2014, 8 (06): : 2975 - 2981
  • [26] A note on the Leindler's class Sα, α > 0
    Tomovski, Z
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2002, 5 (03): : 505 - 509
  • [27] THE COMPLEMENTARY NABLA BENNETT-LEINDLER TYPE INEQUALITIES
    Kayar, Zeynep
    Kaymakcalan, Billur
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2022, 71 (02): : 349 - 376
  • [28] Note on the utility of a theorem of Leindler-Meir-Totik
    J. Németh
    Acta Mathematica Hungarica, 2002, 94 (3) : 241 - 250
  • [29] ON TWO PROBLEMS
    Dyatlov, G. V.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2008, 5 : 647 - 651
  • [30] Two "Two Ostrom" Problems
    Johnson, Marianne
    HISTORY OF POLITICAL ECONOMY, 2022, 54 : 69 - 96