ON TWO PROBLEMS OF LEINDLER

被引:1
|
作者
谢庭藩 [1 ]
机构
[1] Hangzhou University
关键词
In; ON TWO PROBLEMS OF LEINDLER;
D O I
暂无
中图分类号
学科分类号
摘要
Let f(x) be a continuous function with 2π-period i. e. f∈C, and let a/2+ sum form k=1 to ∞ (acoskx+bsinkx) (1) be its Fourier series. S(f)=S(f,x) denotes the n-th partial sum of (1), and E(f), the best approximation of f by trigonometric polynomials of order at most n. L. Leindler in his recent paper raised the following two problems. (Ⅰ) Let p>0 and let r be a nonnegative integer. Is condition
引用
收藏
页码:437 / 442
页数:6
相关论文
共 50 条
  • [1] ON 2 PROBLEMS OF LEINDLER
    XIE, TF
    KEXUE TONGBAO, 1984, 29 (04): : 437 - 442
  • [2] A note on two theorems of Leindler
    Németh, J
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2002, 5 (02): : 225 - 233
  • [3] On a result of Leindler
    Mohapatra, RN
    Salzman, FL
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2002, 5 (01): : 39 - 43
  • [4] On generalizations of theorems of Leindler
    J. L. He
    Acta Mathematica Hungarica, 2013, 141 : 150 - 160
  • [5] On generalizations of theorems of Leindler
    He, J. L.
    ACTA MATHEMATICA HUNGARICA, 2013, 141 (1-2) : 150 - 160
  • [6] Laszlo Leindler 1935 - 2020
    不详
    ACTA SCIENTIARUM MATHEMATICARUM, 2020, 86 (3-4): : 343 - 346
  • [7] SOME NOTES ON THE LEINDLER PROBLEM
    SHI, XL
    KEXUE TONGBAO, 1982, 27 (04): : 460 - 460
  • [8] INEQUALITY OF LEINDLER - PRELIMINARY REPORT
    IMORU, CO
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (06): : A577 - A578
  • [9] A short remark to an important inequality of Leindler
    Xia X.
    Zhou S.P.
    Acta Scientiarum Mathematicarum, 2014, 80 (1-2): : 27 - 29
  • [10] László Leindler 1935–2020
    Acta Scientiarum Mathematicarum, 2020, 86 : 343 - 346