ON THE GENERALIZATIONS OF KALANDIA'S LEMMA

被引:0
|
作者
Yafang Gong (Wuhan University
机构
基金
中国国家自然科学基金;
关键词
Chebyshev polynomials; Chebyshev norm; weighted H lder norm;
D O I
暂无
中图分类号
O174.41 [逼近论];
学科分类号
070104 ;
摘要
Based on Bernstein’s Theorem, Kalandia’s Lemma describes the error estimate and the smoothness of the remainder under the second part of Holder norm when a Holder function is approximated by its best polynomial approximation. In this paper, Kalandia’s Lemma is generalized to the cases that the best polynomial is replaced by one of its four kinds of Chebyshev polynomial expansions, the error estimates of the remainder are given out under Holder norm or the weighted Holder norms.
引用
收藏
页码:329 / 338
页数:10
相关论文
共 50 条
  • [21] Functional generalizations of Hoeffding's covariance lemma and a formula for Kendall's tau
    Lo, Ambrose
    STATISTICS & PROBABILITY LETTERS, 2017, 122 : 218 - 226
  • [22] The pentagonal theorem of sixty-three and generalizations of Cauchy's lemma
    Ju, Jangwon
    Kim, Daejun
    FORUM MATHEMATICUM, 2023, 35 (06) : 1685 - 1706
  • [23] The Debreu Gap Lemma and some generalizations
    Herden, G
    Mehta, GB
    JOURNAL OF MATHEMATICAL ECONOMICS, 2004, 40 (07) : 747 - 769
  • [24] ORIENTABILITY OF PSEUDOMANIFOLD AND GENERALIZATIONS OF SPERNER LEMMA
    YAMAMOTO, Y
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF JAPAN, 1988, 31 (01) : 19 - 43
  • [25] THE WIENER LEMMA AND CERTAIN OF ITS GENERALIZATIONS
    COQUAND, T
    STOLZENBERG, G
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 24 (01) : 1 - 9
  • [26] Some generalizations for the Schwarz-Pick lemma and boundary Schwarz lemma
    Cai, Fangming
    Rui, Jie
    Zhong, Deguang
    AIMS MATHEMATICS, 2023, 8 (12): : 30992 - 31007
  • [27] Orthogonality in locally convex spaces: Two nonlinear generalizations of Neumann's lemma
    Barbagallo, Annamaria
    Ernst, Octavian-Emil
    Thera, Michel
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 484 (01)
  • [28] Some Generalizations of the Riemann-Lebesgue Lemma
    Costin, Ovidiu
    Falkner, Neil
    McNeal, Jeffery D.
    AMERICAN MATHEMATICAL MONTHLY, 2016, 123 (04): : 387 - 391
  • [29] Symmetries on manifolds: generalizations of the radial lemma of Strauss
    Nadine Grosse
    Cornelia Schneider
    Revista Matemática Complutense, 2019, 32 : 365 - 393
  • [30] Symmetries on manifolds: generalizations of the radial lemma of Strauss
    Grosse, Nadine
    Schneider, Cornelia
    REVISTA MATEMATICA COMPLUTENSE, 2019, 32 (02): : 365 - 393