Unsupervised learning of Dirichlet process mixture models with missing data

被引:0
|
作者
Xunan ZHANG [1 ]
Shiji SONG [1 ]
Lei ZHU [2 ]
Keyou YOU [1 ]
Cheng WU [1 ]
机构
[1] Department of Automation, Tsinghua University
[2] China Ocean Mineral Resources R&D Association
基金
中国国家自然科学基金;
关键词
Dirichlet processes; missing data; clustering; variational Bayesian; image analysis;
D O I
暂无
中图分类号
TP391.41 [];
学科分类号
080203 ;
摘要
This study presents a novel approach to unsupervised learning for clustering with missing data.We first extend a finite mixture model to the infinite case by considering Dirichlet process mixtures, which can automatically determine the number of mixture components or clusters. Furthermore, we view the missing features as latent variables and compute the posterior distributions using the variational Bayesian expectation maximization algorithm, which optimizes the evidence lower bound on the complete-data log marginal likelihood. We demonstrate the performance on several artificial data sets with missing values. The experimental results indicate that the proposed method outperforms some classic imputation methods. We finally present an application to seabed hydrothermal sulfide color images analysis problem.
引用
收藏
页码:161 / 174
页数:14
相关论文
共 50 条
  • [21] Unsupervised feature and model selection for generalized Dirichlet mixture models
    Boutemedjet, Sabri
    Bouguila, Nizar
    Ziou, Djemel
    IMAGE ANALYSIS AND RECOGNITION, PROCEEDINGS, 2007, 4633 : 330 - +
  • [22] Unsupervised Tracking With the Doubly Stochastic Dirichlet Process Mixture Model
    Sun, Xing
    Yung, Nelson H. C.
    Lam, Edmund Y.
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2016, 17 (09) : 2594 - 2599
  • [23] Dirichlet Process Mixture of Mixtures Model for Unsupervised Subword Modeling
    Heck, Michael
    Sakti, Sakriani
    Nakamura, Satoshi
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2018, 26 (11) : 2027 - 2042
  • [24] IMAGE DATABASE CATEGORIZATION USING ROBUST UNSUPERVISED LEARNING OF FINITE GENERALIZED DIRICHLET MIXTURE MODELS
    Ben Ismail, M. Maher
    Frigui, Hichem
    2011 18TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2011,
  • [25] Online Data Clustering Using Variational Learning of a Hierarchical Dirichlet Process Mixture of Dirichlet Distributions
    Fan, Wentao
    Bouguila, Nizar
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, DASFAA 2014, 2014, 8505 : 18 - 32
  • [26] Unsupervised learning of finite mixture models
    Figueiredo, MAT
    Jain, AK
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2002, 24 (03) : 381 - 396
  • [27] Dirichlet process mixture models to impute missing predictor data in counterfactual prediction models: an application to predict optimal type 2 diabetes therapy
    Cardoso, Pedro
    Dennis, John M.
    Bowden, Jack
    Shields, Beverley M.
    McKinley, Trevelyan J.
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2024, 24 (01)
  • [28] Dirichlet process mixture models to impute missing predictor data in counterfactual prediction models: an application to predict optimal type 2 diabetes therapy
    Pedro Cardoso
    John M. Dennis
    Jack Bowden
    Beverley M. Shields
    Trevelyan J. McKinley
    BMC Medical Informatics and Decision Making, 24
  • [29] Distributed Collapsed Gibbs Sampler for Dirichlet Process Mixture Models in Federated Learning
    Khoufache, Reda
    Lebbah, Mustapha
    Azzag, Hanene
    Goffinet, Etienne
    Bouchaffra, Djamel
    PROCEEDINGS OF THE 2024 SIAM INTERNATIONAL CONFERENCE ON DATA MINING, SDM, 2024, : 815 - 823
  • [30] A Dirichlet Process Mixture of Robust Task Models for Scalable Lifelong Reinforcement Learning
    Wang, Zhi
    Chen, Chunlin
    Dong, Daoyi
    IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (12) : 7509 - 7520