GLOBAL WEAK SOLUTION TO THE NONLINEAR SCHRDINGER EQUATIONS WITH DERIVATIVE

被引:0
|
作者
Qiaoxin Li [1 ]
机构
[1] The Graduate School of China Academy of Engineering Physics
关键词
Schrdinger equations; global weak solution; a priori estimates; derivative;
D O I
暂无
中图分类号
O175.29 [非线性偏微分方程];
学科分类号
070104 ;
摘要
In this paper, we study the nonlinear Schr¨odinger equations with derivative. By using the Gal¨erkin method and a priori estimates, we obtain the global existence of the weak solution.
引用
收藏
页码:165 / 174
页数:10
相关论文
共 50 条
  • [31] Nondegenerate solitons of 2-coupled mixed derivative nonlinear Schrödinger equations
    Kai-Li Geng
    Da-Sheng Mou
    Chao-Qing Dai
    Nonlinear Dynamics, 2023, 111 : 603 - 617
  • [32] Stability of Algebraic Solitons for Nonlinear Schrödinger Equations of Derivative Type: Variational Approach
    Masayuki Hayashi
    Annales Henri Poincaré, 2022, 23 : 4249 - 4277
  • [33] On a Class of Solutions to the Generalized Derivative Schr?dinger Equations
    Felipe LINARES
    Gustavo PONCE
    Gleison NSANTOS
    Acta Mathematica Sinica, 2019, 35 (06) : 1057 - 1073
  • [34] Rogue wave pattern of multi-component derivative nonlinear Schrödinger equations
    Lin, Huian
    Ling, Liming
    CHAOS, 2024, 34 (04)
  • [35] On a Class of Solutions to the Generalized Derivative Schr?dinger Equations
    Felipe LINARES
    Gustavo PONCE
    Gleison N.SANTOS
    Acta Mathematica Sinica,English Series, 2019, (06) : 1057 - 1073
  • [36] On a Class of Solutions to the Generalized Derivative Schrödinger Equations
    Felipe Linares
    Gustavo Ponce
    Gleison N. Santos
    Acta Mathematica Sinica, English Series, 2019, 35 : 1057 - 1073
  • [37] A system of nonlinear evolution Schrödinger equations
    Sh. M. Nasibov
    Doklady Mathematics, 2007, 76 : 708 - 712
  • [38] Semiclassical States of Nonlinear Schrödinger Equations
    A. Ambrosetti
    M. Badiale
    S. Cingolani
    Archive for Rational Mechanics and Analysis, 1997, 140 : 285 - 300
  • [39] Lagrangian nonlocal nonlinear Schrödinger equations
    Velasco-Juan, M.
    Fujioka, J.
    Chaos, Solitons and Fractals, 2022, 156
  • [40] Hamiltonian formalism for nonlinear Schr?dinger equations
    Pazarci, Ali
    Turhan, Umut Can
    Ghazanfari, Nader
    Gahramanov, Ilmar
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 121