Driving force planning in shield tunneling based on Markov decision processes

被引:0
|
作者
HU XiangTao
机构
关键词
shield tunneling; Markov decision process; automatic deviation rectifying; interval arithmetic; driving force planning;
D O I
暂无
中图分类号
U455.43 [盾构法(全断面开挖)];
学科分类号
摘要
In shield tunneling, the control system needs very reliable capability of deviation rectifying in order to ensure that the tunnel trajectory meets the permissible criterion. To this goal, we present an approach that adopts Markov decision process (MDP) theory to plan the driving force with explicit representation of the uncertainty during excavation. The shield attitudes of possi- ble world and driving forces during excavation are scattered as a state set and an action set, respectively. In particular, an evaluation function is proposed with consideration of the stability of driving force and the deviation of shield attitude. Unlike the deterministic approach, the driving forces based on MDP model lead to an uncertain effect and the attitude is known only with an imprecise probability. We consider the case that the transition probability varies in a given domain estimated by field data, and discuss the optimal policy based on the interval arithmetic. The validity of the approach is discussed by comparing the driving force planning with the actual operating data from the field records of Line 9 in Tianjin. It is proved that the MDP model is reasonable enough to predict the driving force for automatic deviation rectifying.
引用
收藏
页码:1022 / 1030
页数:9
相关论文
共 50 条
  • [31] Planning in Markov Decision Processes with Gap-Dependent Sample Complexity
    Jonsson, Anders
    Kaufmann, Emilie
    Menard, Pierre
    Domingues, Omar Darwiche
    Leurent, Edouard
    Valko, Michal
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [32] A Bayesian Approach for Learning and Planning in Partially Observable Markov Decision Processes
    Ross, Stephane
    Pineau, Joelle
    Chaib-draa, Brahim
    Kreitmann, Pierre
    JOURNAL OF MACHINE LEARNING RESEARCH, 2011, 12 : 1729 - 1770
  • [33] Inspection and maintenance planning: an application of semi-Markov decision processes
    Universite de Technologie de Troyes, Troyes, France
    J Intell Manuf, 5 (467-476):
  • [34] Minimax Regret Optimisation for Robust Planning in Uncertain Markov Decision Processes
    Rigter, Marc
    Lacerda, Bruno
    Hawes, Nick
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 11930 - 11938
  • [35] Strategic Planning under Uncertainties via Constrained Markov Decision Processes
    Ding, Xu Chu
    Pinto, Alessandro
    Surana, Amit
    2013 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2013, : 4568 - 4575
  • [36] Inspection and maintenance planning: an application of semi-Markov decision processes
    Berenguer, C
    Chu, CB
    Grall, A
    JOURNAL OF INTELLIGENT MANUFACTURING, 1997, 8 (05) : 467 - 476
  • [37] Inspection and maintenance planning: an application of semi-Markov decision processes
    CHRISTOPHE BERENGUER
    CHENGBIN CHU
    ANTOINE GRALL
    Journal of Intelligent Manufacturing, 1997, 8 : 467 - 476
  • [38] Policy Reuse for Learning and Planning in Partially Observable Markov Decision Processes
    Wu, Bo
    Feng, Yanpeng
    2017 4TH INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND CONTROL ENGINEERING (ICISCE), 2017, : 549 - 552
  • [39] Markov Decision Processes For Multi-Objective Satellite Task Planning
    Eddy, Duncan
    Kochenderfer, Mykel
    2020 IEEE AEROSPACE CONFERENCE (AEROCONF 2020), 2020,
  • [40] ENGINEERING DECISION SUPPORT OF AUTOMATED SHIELD TUNNELING
    KAKOTO, T
    SKIBNIEWSKI, M
    JOURNAL OF CONSTRUCTION ENGINEERING AND MANAGEMENT-ASCE, 1991, 117 (04): : 674 - 690