Local and Global Bifurcations With Nonhyperbolic Equilibria

被引:0
|
作者
孙建华
罗定军
机构
[1] PRC
[2] Nanjing 210008
[3] Nanjing University
[4] Department of Mathematics
基金
中国国家自然科学基金;
关键词
nonhyperbolic equilibrium; heteroclinic bifurcation; singularity theory; Melnikov function;
D O I
暂无
中图分类号
O182 [解析几何];
学科分类号
0701 ; 070101 ;
摘要
The normal forms of coupling functions governing local and global bifurcations are studied for a generic (d+1) -parameter family of three-dimensional systems with a heteroclinic orbit connecting a hyperbolic saddle and a nonhyperbolic equilibrium occurring in the saddle-node,transcritical and pitchfork bifurcations,respectively.Singularity theory and a version of Melnikov function are used in this paper.
引用
收藏
页码:523 / 534
页数:12
相关论文
共 50 条
  • [41] A Novel Megastable Hamiltonian System with Infinite Hyperbolic and Nonhyperbolic Equilibria
    Leutcho, Gervais Dolvis
    Fozin, Theophile Fonzin
    Negou, Alexis Nguomkam
    Njitacke, Zeric Tabekoueng
    Pham, Viet-Thanh
    Kengne, Jacques
    Jafari, Sajad
    COMPLEXITY, 2020, 2020
  • [42] From global to local bifurcations in a forced Taylor-Couette flow
    Iranzo, V
    Marques, F
    Lopez, JM
    THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 2004, 18 (2-4) : 115 - 128
  • [43] Local versus global stability in dynamical systems with consecutive Hopf bifurcations
    Böttcher P.C.
    Schäfer B.
    Kettemann S.
    Agert C.
    Witthaut D.
    Physical Review Research, 2023, 5 (03):
  • [44] Local and global bifurcations in simple Takagi-Sugeno fuzzy systems
    Cuesta, F
    Ponce, E
    Aracil, J
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2001, 9 (02) : 355 - 368
  • [45] LOCAL AND GLOBAL BIFURCATIONS IN PARAMETRICALLY EXCITED VIBRATIONS OF NEARLY SQUARE PLATES
    YANG, XL
    SETHNA, PR
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1991, 26 (02) : 199 - 220
  • [46] STATIC AND DYNAMIC, LOCAL AND GLOBAL, BIFURCATIONS IN NONLINEAR AUTONOMOUS STRUCTURAL SYSTEMS
    KOUNADIS, AN
    AIAA JOURNAL, 1993, 31 (08) : 1468 - 1477
  • [48] On the bifurcations of equilibria corresponding to double eigenvalues
    Shnol, EE
    Nikolaev, EV
    SBORNIK MATHEMATICS, 1999, 190 (9-10) : 1353 - 1376
  • [49] Numerical investigation of bifurcations of equilibria and Hopf bifurcations in disease transmission models
    Maglevanny, I. I.
    Meletlidou, E.
    Stagika, G.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (01) : 284 - 295
  • [50] Local and Global Stability of Equilibria for a Class of Chemical Reaction Networks
    Donnell, Pete
    Banaji, Murad
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2013, 12 (02): : 899 - 920