Cylindrical effects in weakly nonlinear Rayleigh Taylor instability

被引:0
|
作者
刘万海 [1 ,2 ]
马文芳 [1 ]
王绪林 [1 ]
机构
[1] Research Center of Computational Physics,Mianyang Normal University
[2] HEDPS and CAPT,Peking University
基金
中国国家自然科学基金;
关键词
cylindrical effect; Rayleigh–Taylor instability; variable density fluid;
D O I
暂无
中图分类号
O411 [物理学的数学方法];
学科分类号
0701 ;
摘要
The classical Rayleigh–Taylor instability(RTI)at the interface between two variable density fluids in the cylindrical geometry is explicitly investigated by the formal perturbation method up to the second order.Two styles of RTI,convergent(i.e.,gravity pointing inward)and divergent(i.e.,gravity pointing outwards)configurations,compared with RTI in Cartesian geometry,are taken into account.Our explicit results show that the interface function in the cylindrical geometry consists of two parts:oscillatory part similar to the result of the Cartesian geometry,and non-oscillatory one contributing nothing to the result of the Cartesian geometry.The velocity resulting only from the non-oscillatory term is followed with interest in this paper.It is found that both the convergent and the divergent configurations have the same zeroth-order velocity,whose magnitude increases with the Atwood number,while decreases with the initial radius of the interface or mode number.The occurrence of non-oscillation terms is an essential character of the RTI in the cylindrical geometry different from Cartesian one.
引用
收藏
页码:392 / 397
页数:6
相关论文
共 50 条
  • [31] The Weakly Nonlinear Magnetorotational Instability in a Global, Cylindrical Taylor-Couette Flow
    Clark, S. E.
    Oishi, Jeffrey S.
    ASTROPHYSICAL JOURNAL, 2017, 841 (01):
  • [32] Effects of viscosity and elasticity on Rayleigh-Taylor instability in a cylindrical geometry
    Sun, Y. B.
    Zeng, R. H.
    Tao, J. J.
    PHYSICS OF PLASMAS, 2021, 28 (06) : 1ENG
  • [33] NONLINEAR DEVELOPMENT OF RAYLEIGH TAYLOR INSTABILITY
    MCCRORY, RL
    MORSE, RL
    VERDON, CP
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1977, 22 (09): : 1189 - 1189
  • [34] Weakly nonlinear incompressible Rayleigh-Taylor instability growth at cylindrically convergent interfaces
    Wang, L. F.
    Wu, J. F.
    Ye, W. H.
    Zhang, W. Y.
    He, X. T.
    PHYSICS OF PLASMAS, 2013, 20 (04)
  • [35] The three-dimensional weakly nonlinear Rayleigh-Taylor instability in spherical geometry
    Zhang, J.
    Wang, L. F.
    Wu, J. F.
    Ye, W. H.
    Zou, S. Y.
    Ding, Y. K.
    Zhang, W. Y.
    He, X. T.
    PHYSICS OF PLASMAS, 2020, 27 (02)
  • [36] Coupling between interface and velocity perturbations in the weakly nonlinear Rayleigh-Taylor instability
    Wang, L. F.
    Wu, J. F.
    Fan, Z. F.
    Ye, W. H.
    He, X. T.
    Zhang, W. Y.
    Dai, Z. S.
    Gu, J. F.
    Xue, C.
    PHYSICS OF PLASMAS, 2012, 19 (11)
  • [37] Weakly nonlinear Rayleigh-Taylor instability of a finite-thickness fluid layer
    Wang, L. F.
    Guo, H. Y.
    Wu, J. F.
    Ye, W. H.
    Liu, Jie
    Zhang, W. Y.
    He, X. T.
    PHYSICS OF PLASMAS, 2014, 21 (12)
  • [38] ANALYSIS OF WEAKLY NONLINEAR 3-DIMENSIONAL RAYLEIGH-TAYLOR INSTABILITY GROWTH
    DUNNING, MJ
    HAAN, SW
    PHYSICS OF PLASMAS, 1995, 2 (05) : 1669 - 1681
  • [39] Interface Width Effect on the Weakly Nonlinear Rayleigh-Taylor Instability in Spherical Geometry
    Yang, Yun-Peng
    Zhang, Jing
    Li, Zhi-Yuan
    Wang, Li-Feng
    Wu, Jun-Feng
    Ye, Wun-Hua
    He, Xian-Tu
    CHINESE PHYSICS LETTERS, 2020, 37 (07)
  • [40] Interface width effect on the classical Rayleigh-Taylor instability in the weakly nonlinear regime
    Wang, L. F.
    Ye, W. H.
    Li, Y. J.
    PHYSICS OF PLASMAS, 2010, 17 (05)