COEFFICIENT MULTIPLIERS ON MIXED NORM SPACES

被引:0
|
作者
Yue XiukuiDept. of Math. and Phys.
机构
关键词
analytic function space; Hadamard product; multiplier; operator;
D O I
暂无
中图分类号
O174 [函数论];
学科分类号
070104 ;
摘要
This paper describes the characteristics of the coefficient multipliers of mixed norm spaces A p,q,α with 0<p≤1,0<q,α<∞ into some analytic function spaces.In corollaries,the characteristics of the coefficient multipliers of G p(0<p<1) and A p(0<p≤1) into some analytic function spaces are given.
引用
收藏
页码:252 / 256
页数:5
相关论文
共 50 条
  • [41] Mixed Norm Inequalities for Lebesgue Spaces
    Pankaj Jain
    Santosh Kumari
    Monika Singh
    Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2020, 90 : 783 - 787
  • [42] The mixed norm spaces of polyharmonic functions
    Hu, Zhangjian
    Pavlovic, Miroslav
    Zhang, Xuejun
    POTENTIAL ANALYSIS, 2007, 27 (02) : 167 - 182
  • [43] The diagonal mapping in mixed norm spaces
    Ren, GB
    Shi, JH
    STUDIA MATHEMATICA, 2004, 163 (02) : 103 - 117
  • [44] IMBEDDING THEOREMS FOR SPACES WITH A MIXED NORM
    GUDIEV, AK
    DOKLADY AKADEMII NAUK SSSR, 1966, 166 (03): : 522 - &
  • [45] Remarks on weighted mixed norm spaces
    Blasco, Oscar
    TOPICS IN COMPLEX ANALYSIS AND OPERATOR THEORY, 2012, 561 : 137 - 154
  • [46] Mixed norm spaces and RM(p, q) spaces
    Tanausú Aguilar-Hernández
    Revista Matemática Complutense, 2024, 37 : 435 - 445
  • [47] Randomization in Generalized Mixed Norm Spaces
    Karapetrovic, Boban
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2022, 16 (02)
  • [48] Mixed norm and multidimensional Lorentz spaces
    Barza, Sorina
    Kaminska, Anna
    Persson, Lars-Erik
    Soria, Javier
    POSITIVITY, 2006, 10 (03) : 539 - 554
  • [49] THE INCLUSION PROBLEM FOR MIXED NORM SPACES
    Grey, Wayne
    Sinnamon, Gord
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (12) : 8715 - 8736
  • [50] REPRESENTATION OF NORM-CONTINUOUS MULTIPLIERS ON L INFINITY-SPACES
    HIVELY, GA
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 184 (OCT) : 343 - 353