Surface engineering for high stable lithium-rich manganese-based cathode materials

被引:1
|
作者
Miaomiao Zhou [1 ]
Jianjun Zhao [2 ]
Xiaodong Wang [1 ]
Ji Shen [3 ]
Wenhao Tang [1 ]
Yirui Deng [1 ]
Ruiping Liu [1 ,3 ]
机构
[1] School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing)
[2] State Key Laboratory of Chemical Resources Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry,Beijing University of Chemical Technology
[3] Department of Materials Science and Engineering, China University of Mining & Technology (Beijing)
基金
中央高校基本科研业务费专项资金资助;
关键词
D O I
暂无
中图分类号
TQ131.11 []; TM912 [蓄电池];
学科分类号
摘要
Lithium-rich manganese-based material shows great potential as the high specific cathode materials due to its low cost,environmental friendliness,high operating voltage and simple preparation process.However,the poor capacity retention and cycling performance caused by its unstable structure during cycling restrict the commercialization.In this work,Li1.2Ni0.16Mn0.56Co0.08O2was synthesized utilizing a Coprecipitation method and different amount of La(PO3)3(La(PO3)3=2 wt%,4 wt%and 6 wt%) was selected as the coating layer to resolve the above issues.During the calcination process,La(PO3)3reacts with impurities such as Li OH and Li2CO3on the lithium-rich surface to reduce the residual lithium on the surface,thus improving the interfacial stability,slowing down the corrosion of the electrolyte,and finally enhancing its electrochemical performance.The cathode materials coated with 4%of La(PO3)3showed the best electrochemical performance in terms of capacity retention and cycling performance compared to the pristine NCM.The high initial discharge capacity of 214.21 m Ah/g and capacity retention of 94.2%after 100 cycles at 0.1 C can be obtained.This work provides an effective strategy to protect the cathode from corrosion and will promote its further practical applications in high specific Li-ion batteries.
引用
收藏
页码:618 / 623
页数:6
相关论文
共 50 条
  • [31] Improvement of electrochemical properties of lithium-rich manganese-based cathode materials by Ta2O5
    Ding, Xiaohui
    Liu, Qiang
    Zhu, Haitao
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2022, 26 (04) : 1115 - 1123
  • [32] Segmented temperature control strategy for effectively enhancing the rate performance of lithium-rich manganese-based cathode materials
    Zheng, Zihao
    Hui, Teng
    Yu, Hanqi
    Zhang, Yanmin
    Zhang, Lanxin
    Huang, Linze
    Qian, Hua
    Che, Lidong
    Huang, Honghua
    Bei, Fengli
    JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1020
  • [33] Improvement of electrochemical properties of lithium-rich manganese-based cathode materials by Ta2O5
    Xiaohui Ding
    Qiang Liu
    Haitao Zhu
    Journal of Solid State Electrochemistry, 2022, 26 : 1115 - 1123
  • [34] Enhancing the Stability of Lithium-Rich Manganese-Based Layered Cathode Materials for Li-Ion Batteries Application
    Lu, Zhiyuan
    Liu, Yanni
    Liao, Shijun
    PROGRESS IN CHEMISTRY, 2020, 32 (10) : 1504 - 1514
  • [35] Modification of lithium-rich manganese-based cathode materials by continuous coating formed by surface treatment of sodium dodecyl sulfate to improve electrochemical performance
    Li, Ao
    Liu, Dongmei
    Qin, Guoqiang
    Jia, Zhitong
    Sun, Songyuan
    Wu, Huigui
    Chen, Jingbo
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2024, 687
  • [36] Constructing LiF-rich cathode electrolyte interphase to enhance the cyclic stability of lithium-rich manganese-based oxide cathode
    Yang, Yang
    Zhao, Yajun
    Song, Junjie
    Yu, Xiqian
    Li, Hong
    CHEMICAL COMMUNICATIONS, 2025, 61 (03) : 568 - 571
  • [37] Improving the electrochemical performance of lithium-rich manganese-based cathode materials by Na2S2O8 surface treatment
    Wang, Zeqing
    Liu, Zhihua
    Zhang, Ronglan
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 1008
  • [38] Recent advances in high-performance lithium-rich manganese-based materials for solid-state lithium batteries
    Gao, Keke
    Sun, Chunwen
    Wang, Zelin
    MATERIALS CHEMISTRY FRONTIERS, 2024, 8 (19) : 3082 - 3105
  • [39] Modification of suitable electrolytes for high-voltage lithium-rich manganese-based cathode with wide-temperature range
    Zhang, Long
    Dong, Xi
    Wang, Yutong
    Wang, Xin
    Wang, Chunxia
    Cao, Tiantian
    Wen, Jiawei
    Huang, Guoyong
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2023, 34 (19)
  • [40] A review on progress of lithium-rich manganese-based cathodes for lithium ion batteries
    Ji, Xueqian
    Xia, Qing
    Xu, Yuxing
    Feng, Hailan
    Wang, Pengfei
    Tan, Qiangqiang
    JOURNAL OF POWER SOURCES, 2021, 487