Surface engineering for high stable lithium-rich manganese-based cathode materials

被引:1
|
作者
Miaomiao Zhou [1 ]
Jianjun Zhao [2 ]
Xiaodong Wang [1 ]
Ji Shen [3 ]
Wenhao Tang [1 ]
Yirui Deng [1 ]
Ruiping Liu [1 ,3 ]
机构
[1] School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing)
[2] State Key Laboratory of Chemical Resources Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry,Beijing University of Chemical Technology
[3] Department of Materials Science and Engineering, China University of Mining & Technology (Beijing)
基金
中央高校基本科研业务费专项资金资助;
关键词
D O I
暂无
中图分类号
TQ131.11 []; TM912 [蓄电池];
学科分类号
摘要
Lithium-rich manganese-based material shows great potential as the high specific cathode materials due to its low cost,environmental friendliness,high operating voltage and simple preparation process.However,the poor capacity retention and cycling performance caused by its unstable structure during cycling restrict the commercialization.In this work,Li1.2Ni0.16Mn0.56Co0.08O2was synthesized utilizing a Coprecipitation method and different amount of La(PO3)3(La(PO3)3=2 wt%,4 wt%and 6 wt%) was selected as the coating layer to resolve the above issues.During the calcination process,La(PO3)3reacts with impurities such as Li OH and Li2CO3on the lithium-rich surface to reduce the residual lithium on the surface,thus improving the interfacial stability,slowing down the corrosion of the electrolyte,and finally enhancing its electrochemical performance.The cathode materials coated with 4%of La(PO3)3showed the best electrochemical performance in terms of capacity retention and cycling performance compared to the pristine NCM.The high initial discharge capacity of 214.21 m Ah/g and capacity retention of 94.2%after 100 cycles at 0.1 C can be obtained.This work provides an effective strategy to protect the cathode from corrosion and will promote its further practical applications in high specific Li-ion batteries.
引用
收藏
页码:618 / 623
页数:6
相关论文
共 50 条
  • [1] Surface engineering for high stable lithium-rich manganese-based cathode materials
    Zhou, Miaomiao
    Zhao, Jianjun
    Wang, Xiaodong
    Shen, Ji
    Tang, Wenhao
    Deng, Yirui
    Liu, Ruiping
    CHINESE CHEMICAL LETTERS, 2023, 34 (06)
  • [2] Mitigating chain degradation of lithium-rich manganese-based cathode material by surface engineering
    Cai, Xingpeng
    Li, Shiyou
    Zhou, Junfei
    Zhang, Jiawen
    Zhang, Ningshuang
    Cui, Xiaoling
    ENERGY STORAGE MATERIALS, 2024, 71
  • [3] The role of precipitant in the preparation of lithium-rich manganese-based cathode materials
    Zhao, Taolin
    Ji, Rixin
    Meng, Yu
    CHEMICAL PHYSICS LETTERS, 2019, 730 : 354 - 360
  • [4] Thermal stability of lithium-rich manganese-based cathode
    Geder, Jan
    Song, Jay Hyok
    Kang, Sun Ho
    Yu, Denis Y. W.
    SOLID STATE IONICS, 2014, 268 : 242 - 246
  • [5] Multifunctional surface modification to enhance the electrochemical performance of lithium-rich manganese-based cathode materials
    Su, Zihao
    Guo, Zhihao
    Xie, Haoyu
    Qu, Meizhen
    Wang, Hao
    Peng, Gongchang
    ELECTROCHIMICA ACTA, 2024, 500
  • [6] Polarization behavior of lithium-rich manganese-based cathode materials at different temperatures
    Yang Xi-xin
    Chang Zeng-hua
    Shao Ze-chao
    Wu Shuai-jin
    Wang Ren-nian
    Wang Jian-tao
    Lu Shi-gang
    CAILIAO GONGCHENG-JOURNAL OF MATERIALS ENGINEERING, 2021, 49 (09): : 69 - 78
  • [7] Recent advance in coating strategies for lithium-rich manganese-based cathode materials
    Wang, Qianchen
    Liu, Lei
    Li, Hudong
    Yang, Gaojing
    Alodhayb, Abdullah N.
    Ma, Jianmin
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2025, 207 : 274 - 294
  • [8] Modification Strategies and Challenges of High-Performance Lithium-Rich Manganese-Based Cathode Materials
    Tang, Weihao
    Zhu, Jiping
    Chen, Chao
    Ye, Qin
    Zeng, Fuhao
    Ma, Zeping
    ENERGY TECHNOLOGY, 2024, 12 (04)
  • [9] A stable lithium-rich surface structure for lithium-rich layered cathode materials
    Kim, Sangryun
    Cho, Woosuk
    Zhang, Xiaobin
    Oshima, Yoshifumi
    Choi, Jang Wook
    NATURE COMMUNICATIONS, 2016, 7
  • [10] A review of high-capacity lithium-rich manganese-based cathode materials for a new generation of lithium batteries
    Lin, Yi
    Li, You
    Tang, Mulan
    Zhan, Lulu
    Zhai, Yuxin
    Chen, Weiming
    Zhou, Mengxue
    Ji, Yanan
    Wang, Peike
    INORGANICA CHIMICA ACTA, 2024, 572