Fully discrete Jacobi-spherical harmonic spectral method for Navier-Stokes equations

被引:0
|
作者
黄伟 [1 ]
郭本瑜 [2 ]
机构
[1] Department of Mathematics,Shanghai University
[2] Department of Mathematics,Shanghai Normal University
基金
中国国家自然科学基金;
关键词
fully discrete Jacobi-spherical harmonic spectral method; Navier-Stokes equations in a ball; mixed coordinates;
D O I
暂无
中图分类号
O241.82 [偏微分方程的数值解法]; O357.1 [不可压缩粘性流体力学];
学科分类号
070102 ; 080103 ; 080704 ;
摘要
A fully discrete Jacobi-spherical harmonic spectral method is provided for the Navier-Stokes equations in a ball.Its stability and convergence are proved.Numerical results show efficiency of this approach.The proposed method is also applicable to other problems in spherical geometry.
引用
收藏
页码:453 / 476
页数:24
相关论文
共 50 条
  • [21] A SPECTRAL METHOD WITH STAGGERED GRID FOR INCOMPRESSIBLE NAVIER-STOKES EQUATIONS
    MONTIGNYRANNOU, F
    MORCHOISNE, Y
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1987, 7 (02) : 175 - 189
  • [22] A HYBRID UNSTRUCTURED/SPECTRAL METHOD FOR THE RESOLUTION OF NAVIER-STOKES EQUATIONS
    Corral, Roque
    Crespo, Javier
    PROCEEDINGS OF ASME TURBO EXPO 2009, VOL 7, PTS A AND B, 2009, : 409 - 418
  • [23] A spectral element method for the Navier-Stokes equations with improved accuracy
    De Frutos, J
    Novo, J
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 38 (03) : 799 - 819
  • [24] Spectral Method for Navier-Stokes Equations with Slip Boundary Conditions
    Guo, Ben-yu
    Jiao, Yu-jian
    JOURNAL OF SCIENTIFIC COMPUTING, 2014, 58 (01) : 249 - 274
  • [25] A Fully Discrete SCNFVE Formulation for the Non-stationary Navier-Stokes Equations
    Luo, Zhendong
    Teng, Fei
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2014, 101 (01): : 33 - 58
  • [26] A fully discrete SCNFVE formulation for the non-stationary Navier-Stokes equations
    Luo, Zhendong
    Teng, Fei
    CMES - Computer Modeling in Engineering and Sciences, 2014, 101 (01): : 33 - 58
  • [27] Modified fully discretized projection method for the incompressible Navier-Stokes equations
    Guo, Daniel X.
    APPLIED NUMERICAL MATHEMATICS, 2015, 96 : 187 - 202
  • [28] UNCONDITIONAL CONVERGENCE AND ERROR ESTIMATES OF A FULLY DISCRETE FINITE ELEMENT METHOD FOR THE MICROPOLAR NAVIER-STOKES EQUATIONS
    Mao, Shipeng
    Sun, Jiaao
    Xue, Wendong
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2024, 42 (01): : 71 - 110
  • [29] Analysis of the Fully Discrete Linearly Extrapolated Curvature Stabilize Method for the Thermal Micropolar Navier-Stokes Equations
    Zhang, Yunzhang
    Yong, Xinghui
    Du, Xiaogang
    Zhang, Ji
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2025,