A STABILITY ANALYSIS OF THE (k) JACOBI MATRIX INVERSE EIGENVALUE PROBLEM

被引:0
|
作者
侯文渊
蒋尔雄
机构
[1] Dept.of Math.
[2] PRC.
[3] Shanghai 200436
[4] Shanghai University
关键词
eigenvalue; Jacobi matrix; (k) inverse problem;
D O I
暂无
中图分类号
O241.6 [线性代数的计算方法];
学科分类号
摘要
In this paper we will analyze the perturbation quality for a new algorithm of the (k) Jacobi matrix inverse eigenvalue problem.
引用
收藏
页码:23 / 35
页数:13
相关论文
共 50 条
  • [41] Stability estimates on the Jacobi and unitary Hessenberg inverse eigenvalue problems
    Knizhnerman, L
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2004, 26 (01) : 154 - 169
  • [42] On the inverse eigenvalue problem for a specific symmetric matrix
    Zarch, Maryam Babaei
    JOURNAL OF MATHEMATICAL MODELING, 2023, 11 (03): : 479 - 489
  • [43] A matrix inverse eigenvalue problem and its application
    Li, N
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1997, 266 : 143 - 152
  • [44] NUMERICAL VALIDATION FOR AN INVERSE MATRIX EIGENVALUE PROBLEM
    ALEFELD, G
    GIENGER, A
    MAYER, G
    COMPUTING, 1994, 53 (3-4) : 311 - 322
  • [45] MATRIX INEQUALITIES AND ADDITIVE INVERSE EIGENVALUE PROBLEM
    DEOLIVEIRA, GN
    COMPUTING, 1972, 9 (02) : 95 - +
  • [46] Stability of the Inverse Resonance Problem for Jacobi Operators
    Bledsoe, Matthew
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2012, 74 (04) : 481 - 496
  • [47] Stability of the Inverse Resonance Problem for Jacobi Operators
    Matthew Bledsoe
    Integral Equations and Operator Theory, 2012, 74 : 481 - 496
  • [48] A Class of Generalized Jacobi Matrix Eigenvalue Inverse Problems with Added Edges
    Chen, Yingshi
    Li, Le'Ang
    Lv, Meiling
    Li, Zhibin
    Wang, Lidong
    Proceedings - 2022 Global Conference on Robotics, Artificial Intelligence and Information Technology, GCRAIT 2022, 2022, : 574 - 577
  • [49] Inverse eigenvalue problem of distance matrix via orthogonal matrix
    Nazari, A. M.
    Mahdinasab, F.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 450 : 202 - 216
  • [50] An inverse eigenvalue problem for symmetric Arrow-plus-Jacobi matrices
    College of Science, Jiujiang University, Jiujiang, China
    不详
    Proc. - Int. Conf. Comput. Inf. Sci., ICCIS, (764-766):