Rotating machinery fault detection and diagnosis based on deep domain adaptation: A survey

被引:0
|
作者
Siyu ZHANG [1 ]
Lei SU [1 ]
Jiefei GU [1 ]
Ke LI [1 ]
Lang ZHOU [2 ]
Michael PECHT [3 ]
机构
[1] Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, School of Mechanical Engineering,Jiangnan University
[2] HUST-Wuxi Research Institute
[3] Center for Advanced Life Cycle Engineering, University of Maryland,College Park
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Deep learning; Domain adaptation; Fault detection and diagnosis; Transfer learning;
D O I
暂无
中图分类号
V267 [航空器的维护与修理]; V467 [航天器的维护与修理];
学科分类号
摘要
In practical mechanical fault detection and diagnosis, it is difficult and expensive to collect enough large-scale supervised data to train deep networks. Transfer learning can reuse the knowledge obtained from the source task to improve the performance of the target task, which performs well on small data and reduces the demand for high computation power. However, the detection performance is significantly reduced by the direct transfer due to the domain difference.Domain adaptation(DA) can transfer the distribution information from the source domain to the target domain and solve a series of problems caused by the distribution difference of data. In this survey, we review various current DA strategies combined with deep learning(DL) and analyze the principles, advantages, and disadvantages of each method. We also summarize the application of DA combined with DL in the field of fault diagnosis. This paper provides a summary of the research results and proposes future work based on analysis of the key technologies.
引用
收藏
页码:45 / 74
页数:30
相关论文
共 50 条
  • [21] A novel sample selection approach based universal unsupervised domain adaptation for fault diagnosis of rotating machinery
    Lu, Biliang
    Zhang, Yingjie
    Liu, Zhaohua
    Wei, Hualiang
    Sun, Qingshuai
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2023, 240
  • [22] Partial Domain Adaptation Method Based on Class-Weighted Alignment for Fault Diagnosis of Rotating Machinery
    Zhang, Xiao
    Wang, Jinrui
    Jia, Sixiang
    Han, Baokun
    Zhang, Zongzhen
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [23] Cross-domain fault diagnosis of rotating machinery in nuclear power plant based on improved domain adaptation method
    Wang, Zhichao
    Xia, Hong
    Zhu, Shaomin
    Peng, Binsen
    Zhang, Jiyu
    Jiang, Yingying
    Annor-Nyarko, M.
    JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY, 2022, 59 (01) : 67 - 77
  • [24] A dynamic collaborative adversarial domain adaptation network for unsupervised rotating machinery fault diagnosis
    Wang, Xin
    Jiang, Hongkai
    Mu, Mingzhe
    Dong, Yutong
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2025, 255
  • [25] Interpretable domain adaptation transformer: a transfer learning method for fault diagnosis of rotating machinery
    Liu, Dongdong
    Cui, Lingli
    Wang, Gang
    Cheng, Weidong
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2025, 24 (02): : 1187 - 1200
  • [26] A Trend Domain Adaptation Approach With Dynamic Decision for Fault Diagnosis of Rotating Machinery Equipment
    Chen, Yongyi
    Zhang, Dan
    Yan, Ruqiang
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2025, 21 (03) : 2084 - 2093
  • [27] Deep Domain Adaptation with Correlation Alignment and Supervised Contrastive Learning for Intelligent Fault Diagnosis in Bearings and Gears of Rotating Machinery
    Zhang, Bo
    Dong, Hai
    Qaid, Hamzah A. A. M.
    Wang, Yong
    ACTUATORS, 2024, 13 (03)
  • [28] Fault diagnosis of rotating machinery based on improved deep residual network
    Hou Z.
    Wang H.
    Zhou L.
    Fu Q.
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2022, 44 (06): : 2051 - 2059
  • [29] INTELLIGENT FAULT DIAGNOSIS OF ROTATING MACHINERY BASED ON DEEP NEURAL NETWORK
    Zhang, Xiuchun
    Xia, Hong
    Liu, Yongkang
    Zhu, Shaomin
    Jiang, Yingying
    Zhang, Jiyu
    Liu, Jie
    Yin, Wenzhe
    PROCEEDINGS OF 2024 31ST INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING, VOL 1, ICONE31 2024, 2024,
  • [30] The Study on Rotating Machinery Fault diagnosis Based on Deep Neural Networks
    Lang Bo
    Jin Ying
    Chen Yu Ping
    Fan Xiaolong
    2016 INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION, BIG DATA & SMART CITY (ICITBS), 2017, : 125 - 129