Rotating machinery fault detection and diagnosis based on deep domain adaptation: A survey

被引:0
|
作者
Siyu ZHANG [1 ]
Lei SU [1 ]
Jiefei GU [1 ]
Ke LI [1 ]
Lang ZHOU [2 ]
Michael PECHT [3 ]
机构
[1] Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, School of Mechanical Engineering,Jiangnan University
[2] HUST-Wuxi Research Institute
[3] Center for Advanced Life Cycle Engineering, University of Maryland,College Park
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Deep learning; Domain adaptation; Fault detection and diagnosis; Transfer learning;
D O I
暂无
中图分类号
V267 [航空器的维护与修理]; V467 [航天器的维护与修理];
学科分类号
摘要
In practical mechanical fault detection and diagnosis, it is difficult and expensive to collect enough large-scale supervised data to train deep networks. Transfer learning can reuse the knowledge obtained from the source task to improve the performance of the target task, which performs well on small data and reduces the demand for high computation power. However, the detection performance is significantly reduced by the direct transfer due to the domain difference.Domain adaptation(DA) can transfer the distribution information from the source domain to the target domain and solve a series of problems caused by the distribution difference of data. In this survey, we review various current DA strategies combined with deep learning(DL) and analyze the principles, advantages, and disadvantages of each method. We also summarize the application of DA combined with DL in the field of fault diagnosis. This paper provides a summary of the research results and proposes future work based on analysis of the key technologies.
引用
收藏
页码:45 / 74
页数:30
相关论文
共 50 条
  • [1] Rotating machinery fault detection and diagnosis based on deep domain adaptation: A survey
    Zhang, Siyu
    Su, Lei
    Gu, Jiefei
    LI, Ke
    Zhou, Lang
    Pecht, Michael
    CHINESE JOURNAL OF AERONAUTICS, 2023, 36 (01) : 45 - 74
  • [2] Rotating machinery fault detection and diagnosis based on deep domain adaptation: A survey
    Siyu ZHANG
    Lei SU
    Jiefei GU
    Ke LI
    Lang ZHOU
    Michael PECHT
    Chinese Journal of Aeronautics, 2023, 36 (01) : 45 - 74
  • [3] Domain generalization for rotating machinery fault diagnosis: A survey
    Xiao, Yiming
    Shao, Haidong
    Yan, Shen
    Wang, Jie
    Peng, Ying
    Liu, Bin
    ADVANCED ENGINEERING INFORMATICS, 2025, 64
  • [4] Deep Reinforcement Learning-Based Online Domain Adaptation Method for Fault Diagnosis of Rotating Machinery
    Li, Guoqiang
    Wu, Jun
    Deng, Chao
    Xu, Xuebing
    Shao, Xinyu
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2022, 27 (05) : 2796 - 2805
  • [5] Latent space alignment based domain adaptation (LSADA) for fault diagnosis of rotating machinery
    Kim, Yong Chae
    Ko, Jin Uk
    Lee, Jinwook
    Kim, Taehun
    Ha Jung, Joon
    Youn, Byeng D.
    ADVANCED ENGINEERING INFORMATICS, 2024, 62
  • [6] Unsupervised domain adaptation transfer learning for the fault diagnosis in rotating machinery
    Zhou, Xiangqi
    Fu, Zhongguang
    Gao, Yucai
    Zhendong yu Chongji/Journal of Vibration and Shock, 2024, 43 (10): : 106 - 113
  • [7] Rotating machinery fault diagnosis by deep adversarial transfer learning based on subdomain adaptation
    Shao, Jiajie
    Huang, Zhiwen
    Zhu, Yidan
    Zhu, Jianmin
    Fang, Dianjun
    ADVANCES IN MECHANICAL ENGINEERING, 2021, 13 (08)
  • [8] Cross-Domain Adaptation Using Domain Interpolation for Rotating Machinery Fault Diagnosis
    Jang, Gye-Bong
    Cho, Sung-Bae
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [9] Instance Weighting-Based Partial Domain Adaptation for Intelligent Fault Diagnosis of Rotating Machinery
    Li, Yuqing
    Dong, Yunjia
    Xu, Minqiang
    Liu, Pengpeng
    Wang, Rixin
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [10] CROSS-WORKING CONDITIONS FAULT DIAGNOSIS OF ROTATING MACHINERY BASED ON PARTIAL DOMAIN ADAPTATION
    Ma T.
    Sun L.
    Han B.
    Shi Y.
    Deng A.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2024, 45 (06): : 479 - 486