共 8 条
基于自适应粒子群算法和支持向量机的控制图模式识别
被引:7
作者:
张敏
程文明
机构:
[1] 西南交通大学机械工程研究所
来源:
关键词:
控制图;
模式识别;
支持向量机;
粒子群;
D O I:
暂无
中图分类号:
TP391.41 [];
TP18 [人工智能理论];
学科分类号:
080203 ;
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
针对目前多品种、复杂化的生产趋势,提出了一种基于自适应变异的粒子群算法(AMPSO)和支持向量机(SVM)的控制图失效模式识别的方法。利用SVM小样本学习能力,设计一对一的SVM多分类器进行控制图模式识别,并利用AMPSO算法优化SVM核函数的参数。通过对10种控制图模式(6种基本模式和4种混合模式)的20维特征仿真数据对该方法进行检验,并通过与BP、SVM、PSO-SVM识别方法的对比分析。仿真试验表明该方法有效提高了控制图模式的识别精度,达到98.14%,而BP仅有75%,为控制图在线实时识别提供了一种可行的途径。
引用
收藏
页码:125 / 129
页数:5
相关论文

