Singular and fractional integral operators on preduals of Campanato spaces with variable growth condition

被引:0
|
作者
NAKAI Eiichi [1 ]
机构
[1] Department of Mathematics, Ibaraki University
基金
日本学术振兴会;
关键词
singular integral; fractional integral; Hardy space; Campanato space; variable exponent; space of homogeneous type;
D O I
暂无
中图分类号
O177 [泛函分析];
学科分类号
070104 ;
摘要
We investigate the boundedness of singular and fractional integral operators on generalized Hardy spaces defined on spaces of homogeneous type, which are preduals of Campanato spaces with variable growth condition. To do this we introduce molecules with variable growth condition. Our results are new even for R;case.
引用
收藏
页码:2219 / 2240
页数:22
相关论文
共 50 条
  • [31] THE FRACTIONAL MULTILINEAR SINGULAR INTEGRAL WITH VARIABLE KERNELS ON HARDY SPACES
    Zheng Yang and Jiacheng Lan (Lishui University
    Analysis in Theory and Applications, 2006, (01) : 81 - 90
  • [32] VOLTERRA INTEGRAL OPERATORS AND CARLESON EMBEDDING ON CAMPANATO SPACES
    Liu, Xiaosong
    Li, Songxiao
    Qian, Ruishen
    JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2021, 5 (01): : 141 - 153
  • [33] Volterra Integral Operators from Campanato Spaces into General Function Spaces
    Qian, R.
    Zhu, X.
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2021, 56 (03): : 158 - 167
  • [34] A note on fractional integral operators on Herz spaces with variable exponent
    Meng Qu
    Jie Wang
    Journal of Inequalities and Applications, 2016
  • [35] About integral operators of fractional type on variable Lp spaces
    Rocha, Pablo
    Urciuolo, Marta
    GEORGIAN MATHEMATICAL JOURNAL, 2013, 20 (04) : 805 - 816
  • [36] A note on fractional integral operators on Herz spaces with variable exponent
    Qu, Meng
    Wang, Jie
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016, : 1 - 11
  • [37] Estimates of Fractional Integral Operators on Variable Exponent Lebesgue Spaces
    Tang, Canqin
    Wu, Qing
    Xu, Jingshi
    JOURNAL OF FUNCTION SPACES, 2016, 2016
  • [38] Applications of Campanato spaces with variable growth condition to the Navier-Stokes equation
    Nakai, Eiichi
    Yoneda, Tsuyoshi
    HOKKAIDO MATHEMATICAL JOURNAL, 2019, 48 (01) : 99 - 140
  • [39] Fractional maximal and integral operators in variable exponent Morrey spaces
    Wang, Panwang
    Liu, Zongguang
    ARMENIAN JOURNAL OF MATHEMATICS, 2019, 11 (01):
  • [40] Volterra Integral Operators from Campanato Spaces into General Function Spaces
    R. Qian
    X. Zhu
    Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 2021, 56 : 158 - 167