THE WEIGHTED NORM INEQUALITY FOR A CLASS OF OSCILLATORY INTEGRAL OPERATORS

被引:0
|
作者
陆善镇
张严
机构
[1] Beijing Normal University
[2] Department of Mathematics
[3] PRC
[4] Beijing 100875
基金
中国国家自然科学基金;
关键词
oscillatory integrals; A_p weight;
D O I
暂无
中图分类号
学科分类号
摘要
It is easy to see that the oscillatory factor e~(λP(x,y)) makes it impossible to establish the weighted norm inequality of the oscillatory integral operators (1.1) by the method as in the case of Calderon-Zygmund operators. The purpose of this note is to establish the weighted norm inequality of (1, 1) by the aid of interpolation of operators with change of measures (see [3] ). Let us now state a general result.
引用
收藏
页码:9 / 13
页数:5
相关论文
共 50 条
  • [31] On weighted inequalities for a class of quasilinear integral operators
    Aigerim Kalybay
    Ryskul Oinarov
    Banach Journal of Mathematical Analysis, 2023, 17
  • [32] Weighted Estimates for a Class of Quasilinear Integral Operators
    A. A. Kalybay
    Siberian Mathematical Journal, 2019, 60 : 291 - 303
  • [33] Oscillatory Singular Integral Operators with Holder Class Kernels
    Al-Qassem, Hussain
    Cheng, Leslie
    Pan, Yibiao
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2019, 25 (04) : 2141 - 2149
  • [34] Weighted norm inequalities for multilinear singular integral operators and applications
    Hu, Guoen
    Lin, Chin-Cheng
    ANALYSIS AND APPLICATIONS, 2014, 12 (03) : 269 - 291
  • [35] WEIGHTED NORM INEQUALITIES FOR THE COMMUTATORS OF MULTILINEAR SINGULAR INTEGRAL OPERATORS
    胡国恩
    朱月萍
    Acta Mathematica Scientia, 2011, 31 (03) : 749 - 764
  • [36] Weighted norm inequalities for the maximal commutators of singular integral operators
    Li, Dengfeng
    Hu, Guoen
    Shi, Xianliang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 319 (02) : 509 - 521
  • [37] The weighted norm inequalities of integral operators with special types of kernels
    Chen, Chang-Pao
    Luor, Dah-Chin
    LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (09): : 1734 - 1742
  • [38] Weighted norm inequalities for fractional integral operators with rough kernel
    Ding, Y
    Lu, SZ
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1998, 50 (01): : 29 - 39
  • [39] ON ESTIMATES FOR NORM OF SOME INTEGRAL OPERATORS IN WEIGHTED LEBESGUE SPACES
    Kuliev, K. D.
    Kulieva, G. T.
    Eshimova, M. K.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2023, 26 (01): : 27 - 37
  • [40] Weighted norm inequalities for maximally modulated singular integral operators
    Loukas Grafakos
    José María Martell
    Fernando Soria
    Mathematische Annalen, 2005, 331 : 359 - 394