ON THE FIXED POINT THEOREM OF CONE EXPANSION AND COMPRESSION

被引:0
|
作者
郭大钧 [1 ]
机构
[1] Shandong University
关键词
Pn;
D O I
暂无
中图分类号
学科分类号
摘要
Let P be a cone in a real Banach space E. Let s={x|||x||=r}, S={x|||x||=R}, T={x|r<||x||<R} and T={x|r≤||x||≤R}(R>r>0). The fixed point theorem about the expansion and compression of a cone can be formulated as follows.
引用
收藏
页码:685 / 685
页数:1
相关论文
共 50 条
  • [21] BANACH FIXED POINT THEOREM ON ORTHOGONAL CONE METRIC SPACES
    Olia, Zeinab Eivazi Damirchi Darsi
    Gordji, Madjid Eshaghi
    Bagha, Davood Ebrahimi
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2020, 35 (05): : 1239 - 1250
  • [22] The topological nature of Krasnoselskii's cone fixed point theorem
    Kwong, Man Kam
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (03) : 891 - 897
  • [23] Caristi's Fixed Point Theorem in Cone Metric Space
    Lael, Fatemeh
    Saleem, Naeem
    George, Reny
    JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [24] 2-Cone Banach Spaces and Fixed Point Theorem
    Sahiner, Ahmet
    Yigit, Tuba
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B, 2012, 1479 : 975 - 978
  • [25] Fixed point theorem on two complete cone metric spaces
    Huang X.
    Zhu C.
    Wen X.
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2011, 57 (2) : 341 - 352
  • [26] A Fixed Point Theorem for Contractive Maps in Cone Metric Spaces
    Kieu Phuong Chi
    Truong Phuc Tuan Anh
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2014, 38 (03) : 333 - 340
  • [27] A dual of the compression-expansion fixed point theorems
    Avery, Richard
    Henderson, Johnny
    O'Regan, Donal
    FIXED POINT THEORY AND APPLICATIONS, 2007, 2007 (1)
  • [28] A Dual of the Compression-Expansion Fixed Point Theorems
    Richard Avery
    Johnny Henderson
    Donal O'Regan
    Fixed Point Theory and Applications, 2007
  • [29] A fixed point theorem in a lattice ordered semigroup cone valued cone metric spaces
    Sastry, K. P. R.
    Rao, Ch. Srinivasa
    Sekhar, A. Chandra
    Balaiah, M.
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2013, 6 (04): : 285 - 292
  • [30] KRASNOSEL'SKII TYPE FIXED POINT THEOREM FOR NONLINEAR EXPANSION
    Wang, Fuli
    Wang, Feng
    FIXED POINT THEORY, 2012, 13 (01): : 285 - 291