Plant Growth-Promoting Traits in Rhizobacteria of Heavy Metal-Resistant Plants and Their Effects on Brassica nigra Seed Germination

被引:0
|
作者
Brenda ROMN-PONCE [1 ]
Diana Miryel REZA-VZQUEZ [1 ]
Sonia GUTIRREZ-PAREDES [1 ]
María de Jesús DE HARO-CRUZ [1 ]
Jessica MALDONADO-HERNNDEZ [1 ]
Yanely BAHENA-OSORIO [1 ]
Paulina ESTRADA-DE LOS SANTOS [1 ]
En Tao WANG [1 ]
María Soledad VSQUEZ-MURRIETA [1 ]
机构
[1] Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prolongación Carpio y Plan de Ayala s/n, Col.Santo Tomás, Del.Miguel Hidalgo Ciudad de México
关键词
bioinoculants; endemic plants; mine tailings; pH; phytoremediation; salinity;
D O I
暂无
中图分类号
X17 [环境生物学]; X53 [土壤污染及其防治];
学科分类号
071012 ; 0713 ; 082803 ; 120405 ;
摘要
Phytoremediation is an emerging technology that uses plants and their associated microbes to clean up pollutants from the soil, water, and air. In order to select the plant growth-promoting rhizobacteria(PGPR) for phytoremediation of heavy metal contamination, 60 bacterial strains were isolated from the rhizosphere of two endemic plants, Prosopis laevigata and Spharealcea angustifolia, in a heavy metal-contaminated zone in Mexico. These rhizobacterial strains were characterized for the growth at different pH and salinity, extracellular enzyme production, solubilization of phosphate, heavy metal resistance, and plant growth-promoting(PGP) traits, including production of siderophores and indol-3-acetic acid(IAA). Overall, the obtained rhizobacteria presented multiple PGP traits. These rhizobacteria were also resistant to high levels of heavy metals(including As as a metalloid)(up to 480 mmol L(-1)As(V), 24 mmol L(-1)Pb(Ⅱ), 21 mmol L(-1)Cu(Ⅱ), and 4.5 mmol L(-1)Zn(Ⅱ)). Seven rhizobacterial strains with the best PGP traits were identified as members of Alcaligenes, Bacillus, Curtobacterium, and Microbacterium, and were selected for further bioassay.The inoculation of Brassica nigra seeds with Microbacterium sp. CE3R2, Microbacterium sp. NE1R5, Curtobacterium sp. NM1R1,and Microbacterium sp. NM3E9 facilitated the root development; they significantly improved the B. nigra seed germination and root growth in the presence of heavy metals such as 2.2 mmol L(-1)Zn(Ⅱ). The rhizobacterial strains isolated in the present study had the potential to be used as efficient bioinoculants in phytorremediation of soils contaminated with multiple heavy metals.
引用
收藏
页码:511 / 526
页数:16
相关论文
共 50 条
  • [21] The Biosynthesis and Functions of Polyamines in the Interaction of Plant Growth-Promoting Rhizobacteria with Plants
    Dunn, Michael F.
    Becerra-Rivera, Victor A.
    PLANTS-BASEL, 2023, 12 (14):
  • [22] The effects of plant growth-promoting rhizobacteria (PGPR) on the growth and quality of strawberries
    Pii, Y.
    Graf, H.
    Valentinuzzi, F.
    Cesco, S.
    Mimmo, T.
    VIII INTERNATIONAL SYMPOSIUM ON MINERAL NUTRITION OF FRUIT CROPS, 2018, 1217 : 231 - 238
  • [23] Effects of plant growth-promoting rhizobacteria on organic lettuce production
    Malkoclu, M. C.
    Tuzel, Y.
    Oztekin, G. B.
    Ozaktan, H.
    Yolageldi, L.
    III INTERNATIONAL SYMPOSIUM ON ORGANIC GREENHOUSE HORTICULTURE, 2017, 1164 : 265 - 271
  • [24] The effects of plant growth-promoting rhizobacteria on plants under temperature stress:A meta-analysis
    Zhang, Xiaofeng
    Yang, Zhandong
    Wang, Liu
    Yue, Yuanzheng
    Wang, Lianggui
    Yang, Xiulian
    RHIZOSPHERE, 2023, 28
  • [25] Plant Growth-Promoting Rhizobacteria as Tools to Improve the Growth of Kohlrabi (Brassica oleracea var. gongylodes) Plants in an Aquaponics System
    Pinero, Maria Carmen
    Collado-Gonzalez, Jacinta
    Otalora, Gines
    Lopez-Marin, Josefa
    del Amor, Francisco M.
    PLANTS-BASEL, 2024, 13 (05):
  • [26] Effect of plant growth-promoting rhizobacteria on oilseed rape Brassica juncea and phytoextraction of cadmium
    Zhang, Yuke
    Wu, Xinguo
    Tao, Yue
    Ke, Tan
    Wu, Wanyin
    Liao, Kejun
    Li, Xinyue
    Zeng, Yuyang
    Chen, Chaoqi
    Chen, Lanzhou
    JOURNAL OF SOILS AND SEDIMENTS, 2023, 23 (09) : 3472 - 3484
  • [27] The influence of plant growth-promoting rhizobacteria on growth and enzyme activities in wheat and spinach plants
    Cakmakci, Ramazan
    Erat, Mustafa
    Erdogan, Ummugulsum
    Donmez, Mesude Figen
    JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, 2007, 170 (02) : 288 - 295
  • [28] Effect of co-inoculation of plant growth-promoting rhizobacteria on the growth of amaranth plants
    Chatterjee, Swagata
    Sau, Gopi Ballav
    Sinha, Sangram
    Mukherjee, Samir Kumar
    ARCHIVES OF AGRONOMY AND SOIL SCIENCE, 2012, 58 (12) : 1387 - 1397
  • [29] Biopriming of seed with plant growth-promoting bacteria for improved germination and seedling growth
    Fiodor, Angelika
    Ajijah, Nur
    Dziewit, Lukasz
    Pranaw, Kumar
    FRONTIERS IN MICROBIOLOGY, 2023, 14
  • [30] Interactions of plant growth-promoting rhizobacteria and soil factors in two leguminous plants
    Xiao, Xiao
    Fan, Miaochun
    Wang, Entao
    Chen, Weimin
    Wei, Gehong
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2017, 101 (23-24) : 8485 - 8497