Voltage Security Operation Region Calculation Based on Improved Particle Swarm Optimization and Recursive Least Square Hybrid Algorithm

被引:1
|
作者
Saniye Maihemuti [1 ]
Weiqing Wang [1 ]
Haiyun Wang [1 ]
Jiahui Wu [1 ]
机构
[1] Xinjiang University
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TM73 [电力系统的调度、管理、通信]; TP18 [人工智能理论];
学科分类号
080802 ; 081104 ; 0812 ; 0835 ; 1405 ;
摘要
Large-scale voltage collapse incidences, which result in power outages over large regions and extensive economic losses, are presently common occurrences worldwide. To avoid voltage collapse and operate more safely and reliably, it is necessary to analyze the voltage security operation region(VSOR) of power systems, which has become a topic of increasing interest lately. In this paper, a novel improved particle swarm optimization and recursive least square(IPSO-RLS) hybrid algorithm is proposed to determine the VSOR of a power system. Also, stability analysis on the proposed algorithm is carried out by analyzing the errors and convergence accuracy of the obtained results. Firstly, the voltage stability and VSOR-surface of a power system are analyzed in this paper. Secondly, the two algorithms,namely IPSO and RLS algorithms, are studied individually.Based on this understanding, a novel IPSO-RLS hybrid algorithm is proposed to optimize the active and reactive power,and the voltage allowed to identify the VSOR-surface accurately. Finally, the proposed algorithm is validated by using a simulation case study on three wind farm regions of actual Hami Power Grid of China in DIg SILENT/Power Factory software.The error and accuracy of the obtained simulation results are analyzed and compared with those of the particle swarm optimization(PSO), IPSO and IPSO-RLS hybrid algorithms.
引用
收藏
页码:138 / 147
页数:10
相关论文
共 50 条
  • [41] An Improved Hybrid Multi-objective Particle Swarm Optimization Algorithm
    Zhou, Zuan
    Dai, Guangming
    Fang, Pan
    Chen, Fangjie
    Tan, Yi
    ADVANCES IN COMPUTATION AND INTELLIGENCE, PROCEEDINGS, 2008, 5370 : 181 - 188
  • [42] Improved Hybrid Particle Swarm Optimization Algorithm Application in Workshop Scheduling
    Huang, Ming
    Wang, Ning
    Liang, Xu
    PROCEEDINGS OF 2019 IEEE 7TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT 2019), 2019, : 196 - 199
  • [43] Weak Voltage Area Recovery Based On Improved Poly-Particle Swarm Optimization Algorithm
    Sheng, Siqing
    Wang, Ying
    2009 ASIA-PACIFIC POWER AND ENERGY ENGINEERING CONFERENCE (APPEEC), VOLS 1-7, 2009, : 1813 - 1816
  • [44] An Improved Particle Swarm Algorithm Based on Cultural Algorithm for Constrained Optimization
    Wang, Lina
    Cao, Cuiwen
    Xu, Zhenhao
    Gu, Xingsheng
    KNOWLEDGE DISCOVERY AND DATA MINING, 2012, 135 : 453 - 460
  • [45] Improved ant colony optimization algorithm based on particle swarm optimization
    School of Automation, University of Science and Technology Beijing, Beijing 100083, China
    不详
    Kongzhi yu Juece Control Decis, 2013, 6 (873-878+883):
  • [46] RFID network optimization based on improved particle swarm optimization algorithm
    Liu, Kuai
    Shen, Yan-Xia
    Ji, Zhi-Cheng
    Zhongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Central South University (Science and Technology), 2011, 42 (SUPPL. 1): : 900 - 904
  • [47] Improved Topological Optimization Method Based on Particle Swarm Optimization Algorithm
    Guan, Jie
    Zhang, Wenqun
    IEEE ACCESS, 2022, 10 : 52067 - 52074
  • [48] Optimization of UAV Airfoil Based on Improved Particle Swarm Optimization Algorithm
    Jiang, Tieying
    Jiang, Liang
    INTERNATIONAL JOURNAL OF AEROSPACE ENGINEERING, 2022, 2022
  • [49] A hybrid optimizer based on firefly algorithm and particle swarm optimization algorithm
    Xia, Xuewen
    Gui, Ling
    He, Guoliang
    Xie, Chengwang
    Wei, Bo
    Xing, Ying
    Wu, Ruifeng
    Tang, Yichao
    JOURNAL OF COMPUTATIONAL SCIENCE, 2018, 26 : 488 - 500
  • [50] Hybrid Algorithm Based on Phasor Particle Swarm Optimization and Firefly Algorithm
    Chen, Peilin
    Wu, Chenhan
    Liu, Xiaole
    Wang, Yongjin
    ADVANCES IN SWARM INTELLIGENCE, ICSI 2023, PT I, 2023, 13968 : 148 - 157