Periodic Wave Solutions for Konopelchenko-Dubrovsky Equation

被引:1
|
作者
ZHANG Jin-liang
Department of Mathematics
Department of Finance
机构
关键词
Konopelchenko-Dubrovsky equation; F-expansion method; Jacobi elliptic functions; periodic wave solution; solitary wave solution;
D O I
暂无
中图分类号
O174.6 [特殊函数];
学科分类号
070104 ;
摘要
By using F-expansion method proposed recently, we derive the periodic wave solution expressed by Jacobi elliptic functions for Konopelchenko-Dubrovsky equation. In the limit case, the solitary wave solution and other type of the traveling wave solutions are derived.
引用
收藏
页码:72 / 78
页数:7
相关论文
共 50 条
  • [11] The -dimensional Konopelchenko-Dubrovsky equation: nonlocal symmetries and interaction solutions
    Ren, Bo
    Cheng, Xue-Ping
    Lin, Ji
    NONLINEAR DYNAMICS, 2016, 86 (03) : 1855 - 1862
  • [12] Infinitely Many Symmetries of Konopelchenko-Dubrovsky Equation
    LI Zhi--Fang
    RUAN Hang--Yu Department of Physics
    CommunicationsinTheoreticalPhysics, 2005, 44 (09) : 385 - 388
  • [13] Transverse spectral instabilities in Konopelchenko-Dubrovsky equation
    Bhavna
    Pandey, Ashish Kumar
    Singh, Sudhir
    STUDIES IN APPLIED MATHEMATICS, 2023, 151 (03) : 1053 - 1071
  • [14] Abundant multisoliton structures of the Konopelchenko-Dubrovsky equation
    Zhao, Hong
    Han, Ji-Guang
    Wang, Wei-Tao
    An, Hong-Yong
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2006, 56 (12) : 1381 - 1388
  • [15] Lump soliton wave solutions for the (2+1)-dimensional Konopelchenko-Dubrovsky equation and KdV equation
    Khater, Mostafa M. A.
    Lu, Dianchen
    Attia, Raghda A. M.
    MODERN PHYSICS LETTERS B, 2019, 33 (18):
  • [16] Infinitely many symmetries of Konopelchenko-Dubrovsky equation
    Li, ZF
    Ruan, HY
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2005, 44 (03) : 385 - 388
  • [18] Finite Symmetry Transformation Groups and Exact Solutions of Konopelchenko-Dubrovsky Equation
    Zhang Huan-Ping
    Li Biao
    Chen Yong
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2009, 52 (03) : 479 - 482
  • [19] New Exponential and Complex Traveling Wave Solutions to the Konopelchenko-Dubrovsky Model
    Dusunceli, Faruk
    ADVANCES IN MATHEMATICAL PHYSICS, 2019, 2019
  • [20] Complexiton and resonant multiple wave solutions to the (2+1)-dimensional Konopelchenko-Dubrovsky equation
    Wu, Pinxia
    Zhang, Yufeng
    Muhammad, Iqbal
    Yin, Qiqi
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 76 (04) : 845 - 853