Complementary Inequalities to Improved AM-GM Inequality

被引:0
|
作者
Hamid Reza MORADI [1 ]
Mohsen Erfanian OMIDVAR [1 ]
机构
[1] Department of Mathematics, Mashhad Branch, Islamic Azad University
关键词
Operator inequalities; positive linear maps; operator norm; Kantorovich inequality; Wielandt inequality;
D O I
暂无
中图分类号
O178 [不等式及其他];
学科分类号
0701 ; 070101 ;
摘要
Following an idea of Lin, we prove that if A and B are two positive operators such that 0 < mI ≤ A ≤m’I≤ M’I ≤ B ≤ MI, then Φ;(A+B/2)≤K;(h)/(1+(logM’/m’/g));Φ;(A≠B) and Φ;(A+B/2)≤K;(h)/(1+(logM’/m’/g));(Φ(A)≠Φ(B));where K(h)=(h+1);/4 and h = M/m and Φ is a positive unital linear map.
引用
收藏
页码:1609 / 1616
页数:8
相关论文
共 50 条
  • [1] Complementary inequalities to improved AM-GM inequality
    Moradi, Hamid Reza
    Omidvar, Mohsen Erfanian
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2017, 33 (12) : 1609 - 1616
  • [2] Complementary inequalities to improved AM-GM inequality
    Hamid Reza Moradi
    Mohsen Erfanian Omidvar
    Acta Mathematica Sinica, English Series, 2017, 33 : 1609 - 1616
  • [3] Complementary Inequalities to Improved AM-GM Inequality
    Hamid Reza MORADI
    Mohsen Erfanian OMIDVAR
    ActaMathematicaSinica, 2017, 33 (12) : 1609 - 1616
  • [4] The AM-GM inequality
    Hirschhorn, Michael D.
    MATHEMATICAL INTELLIGENCER, 2007, 29 (04): : 7 - 7
  • [5] The AM-GM inequality
    Michael D. Hirschhorn
    The Mathematical Intelligencer, 2007, 29 : 7 - 7
  • [6] Some norm and operator inequalities to improved AM-GM inequality with Specht's ratio
    Nikzat, Elham
    Omidvar, Mohsen Erfanian
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (02)
  • [7] A cyclic AM-GM inequality
    Tetiva, Marian
    AMERICAN MATHEMATICAL MONTHLY, 2007, 114 (07): : 647 - 647
  • [8] The Ubiquitous AM-GM Inequality
    Batinetu-Giurgiu, D. M.
    Stanciu, Neculai
    FIBONACCI QUARTERLY, 2013, 51 (01): : 86 - 86
  • [9] On Some General Inequalities Related to Operator AM-GM Inequality
    Safshekan, Rahim
    Farokhinia, Ali
    FILOMAT, 2020, 34 (11) : 3601 - 3607
  • [10] The AM-GM Inequality is Equivalent to the Bernoulli Inequality
    Lech Maligranda
    The Mathematical Intelligencer, 2012, 34 : 1 - 2