The AM-GM inequality

被引:4
|
作者
Hirschhorn, Michael D. [1 ]
机构
[1] Univ New S Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
来源
MATHEMATICAL INTELLIGENCER | 2007年 / 29卷 / 04期
关键词
Mathematical Method; Simple Proof;
D O I
10.1007/BF02986168
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:7 / 7
页数:1
相关论文
共 50 条
  • [1] The AM-GM inequality
    Michael D. Hirschhorn
    The Mathematical Intelligencer, 2007, 29 : 7 - 7
  • [2] A cyclic AM-GM inequality
    Tetiva, Marian
    AMERICAN MATHEMATICAL MONTHLY, 2007, 114 (07): : 647 - 647
  • [3] The Ubiquitous AM-GM Inequality
    Batinetu-Giurgiu, D. M.
    Stanciu, Neculai
    FIBONACCI QUARTERLY, 2013, 51 (01): : 86 - 86
  • [4] The AM-GM Inequality is Equivalent to the Bernoulli Inequality
    Lech Maligranda
    The Mathematical Intelligencer, 2012, 34 : 1 - 2
  • [5] The AM-GM Inequality and CBS Inequality Are Equivalent
    Lin, Minghua
    MATHEMATICAL INTELLIGENCER, 2012, 34 (02): : 6 - 6
  • [6] The AM-GM Inequality is Equivalent to the Bernoulli Inequality
    Maligranda, Lech
    MATHEMATICAL INTELLIGENCER, 2012, 34 (01): : 1 - 2
  • [7] The AM-GM Inequality and CBS Inequality Are Equivalent
    Minghua Lin
    The Mathematical Intelligencer, 2012, 34 : 6 - 6
  • [8] Squaring a reverse AM-GM inequality
    Lin, Minghua
    STUDIA MATHEMATICA, 2013, 215 (02) : 187 - 194
  • [9] NEW RESULTS ON THE AM-GM INEQUALITY
    Ivankovic, Bozidar
    Pecaric, Josip
    Varosanec, Sanja
    MISKOLC MATHEMATICAL NOTES, 2011, 12 (01) : 61 - 73
  • [10] From the Weighted AM-GM Inequality
    Alexandrescu, Diana
    Luis Diaz-Barrero, Jose
    FIBONACCI QUARTERLY, 2013, 51 (01): : 86 - 86