The Semiclassical Limit in the Quantum Drift-Diffusion Model

被引:0
|
作者
Qiang Chang JUInstitute of Applied Physics and Computational Mathematics
机构
关键词
quantum drift-diffusion; weak solution; semiclassical limit; isentropic;
D O I
暂无
中图分类号
O413 [量子论]; O171 [分析基础];
学科分类号
摘要
Semiclassical limit to the solution of isentropic quantum drift-diffusion model in semiconductorsimulation is discussed. It is proved that the semiclassical limit of this solution satisfies theclassical drift-diffusion model. In addition, we also proved the global existence of weak solutions.
引用
收藏
页码:253 / 264
页数:12
相关论文
共 50 条
  • [31] Weak solutions to the stationary quantum drift-diffusion model
    Qiang, Chen
    Ping, Guan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 359 (02) : 666 - 673
  • [32] On the Multidimensional Bipolar Isothermal Quantum Drift-diffusion Model
    Dong, Jianwei
    INTELLIGENT SYSTEM AND APPLIED MATERIAL, PTS 1 AND 2, 2012, 466-467 : 186 - 190
  • [33] Optimal control of the stationary quantum drift-diffusion model
    Unterreiter, A.
    Volkwein, S.
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2007, 5 (01) : 85 - 111
  • [34] The Asymptotic Drift-Diffusion Limit of Thermal Neutrons
    McClarren, Ryan G.
    Adams, Marvin L.
    Vaquer, Pablo A.
    Strack, Clay
    JOURNAL OF COMPUTATIONAL AND THEORETICAL TRANSPORT, 2014, 43 (1-7) : 402 - 417
  • [35] The study of a drift-diffusion model
    Abouchabaka, J
    Aboulaïch, R
    Nachaoui, A
    Souissi, A
    ICM 2001: 13TH INTERNATIONAL CONFERENCE ON MICROELECTRONICS, PROCEEDINGS, 2001, : 54 - 58
  • [36] Drift-diffusion limit of a model for the dynamics of epithelial and mesenchymal cell monolayers
    Delitala, Marcello
    Lorenzi, Tommaso
    APPLIED MATHEMATICS LETTERS, 2013, 26 (08) : 826 - 830
  • [37] Quasineutral limit of the drift-diffusion model for semiconductors with general initial data
    Schmeiser, C
    Wang, S
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2003, 13 (04): : 463 - 470
  • [38] The quantum drift-diffusion model: Existence and exponential convergence to the equilibrium
    Pinaud, Olivier
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2019, 36 (03): : 811 - 836
  • [39] Adaptive time discretization for a transient quantum drift-diffusion model
    Shimada, T.
    Odanaka, S.
    SISPAD 2007: SIMULATION OF SEMICONDUCTOR PROCESSES AND DEVICES 2007, 2007, : 337 - 340
  • [40] Conservation laws and solutions of a quantum drift-diffusion model for semiconductors
    Ibragimov, N. H.
    Khamitova, R.
    Avdonina, E. D.
    Galiakberova, L. R.
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2015, 77 : 69 - 73