Exact Solutions to Nonlinear Schr(?)dinger Equation and Higher-Order Nonlinear Schr(?)inger Equation

被引:0
|
作者
REN Ji RUAN Hang-Yu Department of Physics
机构
基金
中国国家自然科学基金;
关键词
generalized Lie group reduction method; nonlinear Schr(?)dinger equation; higher order nonlinear Schr(?)dinger equation;
D O I
暂无
中图分类号
O175.29 [非线性偏微分方程];
学科分类号
摘要
We study solutions of the nonlinear Schrdinger equation (NLSE) and higher-order nonlinear Schrdingerequation (HONLSE) with variable coefficients.By considering all the higher-order effect of HONLSE as a new dependentvariable,the NLSE and HONLSE can be changed into one equation.Using the generalized Lie group reduction method(GLGRM),the abundant solutions of NLSE and HONLSE are obtained.
引用
收藏
页码:575 / 578
页数:4
相关论文
共 50 条
  • [41] Dynamic description of soliton solutions of nonlinear schrödinger equation with higher order dispersion and nonlinear terms
    Shehzad, Khurrem
    Wang, Jun
    Seadawy, Aly R.
    Arshad, Muhammad
    Ahmed, Iftikhar
    PHYSICA SCRIPTA, 2024, 99 (12)
  • [42] The exact solutions for the nonlinear variable-coefficient fifth-order Schr?dinger equation
    Li, Cheng'ao
    Lu, Junliang
    RESULTS IN PHYSICS, 2022, 39
  • [43] Rogue-wave solutions of a higher-order nonlinear Schrödinger equation for inhomogeneous Heisenberg ferromagnetic system
    H. X. Jia
    J. Y. Ma
    Y. J. Liu
    X. F. Liu
    Indian Journal of Physics, 2015, 89 : 281 - 287
  • [44] The multi-positon and breather positon solutions for the higher-order nonlinear Schrödinger equation in optical fibers
    Zhang, Xi
    Wang, Yu-Feng
    Yang, Sheng-Xiong
    PHYSICA SCRIPTA, 2024, 99 (10)
  • [45] Novel picosecond wave solutions and soliton control for a higher-order nonlinear Schrödinger equation with variable coefficient
    Gaballah, Mahmoud
    El-Shiekh, Rehab M.
    ALEXANDRIA ENGINEERING JOURNAL, 2025, 114 : 419 - 425
  • [46] Soliton solutions for the nonlocal nonlinear Schrödinger equation
    Xin Huang
    Liming Ling
    The European Physical Journal Plus, 131
  • [47] Singular solutions of the nonlocal nonlinear Schrödinger equation
    Bingwen Lin
    The European Physical Journal Plus, 137
  • [48] Multiplicity of positive solutions of a nonlinear Schrödinger equation
    Yanheng Ding
    Kazunaga Tanaka
    manuscripta mathematica, 2003, 112 : 109 - 135
  • [49] On Multiwave Solutions of One Nonlinear Schrödinger Equation
    A. N. Volobuev
    Differential Equations, 2021, 57 : 711 - 717
  • [50] Multiple positive solutions for a nonlinear Schrödinger equation
    Th. BartschRID="*"
    Z.-Q. WangRID="*"ID="*"Research supported by NATO grant CRG 970179 and DFG grant Gi 30/68-1
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 2000, 51 : 366 - 384