Asymptotics for the Korteweg-de Vries-Burgers Equation

被引:0
|
作者
Nakao HAYASHI [1 ]
Pavel I.NAUMKIN [2 ]
机构
[1] Department of Mathematics,Graduate School of Science,Osaka University,Osaka,Toyonaka,560-0043,Japan
[2] Instituto de Matemáticas,UNAM Campus Morelia,AP 61-3(Xangari),Morelia CP 58089,Michoacán,Mexico
关键词
Korteweg-de Vries-Burgers equation; asymptotics for large time; large initial data;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
We study large time asymptotics of solutions to the Korteweg-de Vries-Burgers equationut+uux-uxx+uxx=0,x ∈ R,t>0.We are interested in the large time asymptotics for the case when the initial data have an arbitrarysize. We prove that if the initial data u0∈ Hs(R)∩ L1(R), where s >-1/2, then there exists a uniquesolution u(t,x)∈ C∞((0,∞);H∞(R))to the Cauchy problem for the Korteweg-de Vries-Burgersequation, which has asymptoticsu(t)=t-1/2fM((·)t-1/2+o(t-1/2)as t→∞,where fM is the self-similar solution for the Burgers equation. Moreover if xu0(x)∈L1(R),then the asymptotics are trueu(t)=t-1/2fM((·)t-1/2+O(t-1/2-γ),where γ∈(0,1/2).
引用
收藏
页码:1441 / 1456
页数:16
相关论文
共 50 条
  • [21] Distributed control of the generalized Korteweg-de Vries-Burgers equation
    Smaoui, Nejib
    Al-Jamal, Rasha H.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2008, 2008
  • [22] Boundary control of the generalized Korteweg-de Vries-Burgers equation
    Smaoui, Nejib
    Al-Jamal, Rasha H.
    NONLINEAR DYNAMICS, 2008, 51 (03) : 439 - 446
  • [23] ON THE APPROXIMATION OF SOLUTIONS OF THE GENERALIZED KORTEWEG-DE VRIES-BURGERS EQUATION
    KARAKASHIAN, O
    MCKINNEY, W
    MATHEMATICS AND COMPUTERS IN SIMULATION, 1994, 37 (4-5) : 405 - 416
  • [24] Nonstationary solutions of a generalized Korteweg-de Vries-Burgers equation
    Chugainova, A. P.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2013, 281 (01) : 204 - 212
  • [25] New class of solutions of the Korteweg-de Vries-Burgers equation
    Zayko, YN
    Nefedov, IS
    APPLIED MATHEMATICS LETTERS, 2001, 14 (01) : 115 - 121
  • [26] Global boundary stabilization of the Korteweg-de Vries-Burgers equation
    Liu, Wei-Jiu
    Krstic, Miroslav
    COMPUTATIONAL & APPLIED MATHEMATICS, 2002, 21 (01): : 315 - 354
  • [27] Korteweg-de Vries-Burgers system in RN
    Dlotko, Tomasz
    Kania, Maria B.
    Ma, Shan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 411 (02) : 853 - 872
  • [28] Boundary Stabilization of the Time Fractional Korteweg-de Vries-Burgers Equation
    Li, Ying
    Cheng, Yi
    Li, Cuiying
    2022 34TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2022, : 121 - 124
  • [29] Adaptive Stabilization of the Korteweg-de Vries-Burgers Equation with Unknown Dispersion
    Deng, Xiaoyan
    Tian, Lixin
    Chen, Wenxia
    JOURNAL OF APPLIED MATHEMATICS, 2012,
  • [30] An Efficient Numerical Technique for Solving the Korteweg-de Vries-Burgers Equation
    Alalyani, Ahmad
    Ahmed, Dilveen M.
    Mahmood, Bewar A.
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2025, 23