THE SYMMETRIC AND SYMMETRIC POSITIVE SEMIDEFINITE SOLUTIONS OF LINEAR MATRIX EQUATION——BTXB = D ON LINEAR MANIFOLDS

被引:5
|
作者
邓远北
胡锡炎
张磊
机构
[1] Challgsha 410082 PRC
[2] Changsha 410082 PRC
[3] College of Mathematics and Econometrics
[4] Hunan Computing Center
[5] Hunan UniVersity
[6] Hunan University
关键词
matrix equation; matrix norm; linear manifold; symmetric (positive semidefinite) matrix; optimal approximation;
D O I
暂无
中图分类号
O151.21 [矩阵论];
学科分类号
070104 ;
摘要
This paper discusses the solutions of the linear matrix equation B;XB=D on some linear manifolds. Some necessary and sufficient conditions for the existence of the solution and the expression of the general solution are given. And also some optimal approximation solutions are discussed.
引用
收藏
页码:186 / 192
页数:7
相关论文
共 50 条
  • [41] Characterization of linear symmetric solutions for allocation problems
    Sanchez-Perez, J.
    Plata-Perez, L.
    Accinelli-Garnba, E.
    ECONOMICS LETTERS, 2015, 130 : 9 - 12
  • [42] Fuzzy symmetric solutions of fuzzy linear systems
    Allahviranloo, T.
    Salahshour, S.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (16) : 4545 - 4553
  • [43] Characterization of Lorentzian manifolds with a semi-symmetric linear connection
    Chaubey, Sudhakar K.
    De, Uday Chand
    Siddiqi, M. Danish
    JOURNAL OF GEOMETRY AND PHYSICS, 2021, 166
  • [44] On Randers manifolds with semi-symmetric compatible linear connections
    Vincze, Csaba
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2015, 26 (02): : 363 - 379
  • [45] On complete linear Weingarten hypersurfaces in locally symmetric Riemannian manifolds
    Aquino, Cicero P.
    de Lima, Henrique F.
    dos Santos, Fabio R.
    Velasquez, Marco Antonio L.
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2015, 56 (04): : 515 - 529
  • [46] An iterative method for the least squares symmetric solution of the linear matrix equation AXB = C
    Peng, ZY
    APPLIED MATHEMATICS AND COMPUTATION, 2005, 170 (01) : 711 - 723
  • [47] Computational Complexity of Decomposing a Symmetric Matrix as a Sum of Positive Semidefinite and Diagonal Matrices
    Tuncel, Levent
    Vavasis, Stephen A.
    Xu, Jingye
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2025, 25 (01) : 223 - 269
  • [48] The Generalized Anti-symmetric Solutions of the Matrix Equation
    Peng, Xiangyang
    Lan, Yan
    ADVANCES IN MATRIX THEORY AND ITS APPLICATIONS, VOL II: PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON MATRIX THEORY AND ITS APPLICATIONS, 2008, : 238 - 241
  • [49] The Symmetric Idempotent Solutions of the Matrix Equation XA=B
    Meng, Chunjun
    Hu, Xiyan
    Zhong, Can
    ADVANCES IN MATRIX THEORY AND ITS APPLICATIONS, VOL 1: PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON MATRIX THEORY AND ITS APPLICATIONS, 2008, : 185 - 188
  • [50] Schwarz iterations for symmetric positive semidefinite problems
    Nabben, Reinhard
    Szyld, Daniel B.
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2007, 29 (01) : 98 - 116