深度学习在流程工业过程数据建模中的应用

被引:13
|
作者
袁小锋
王雅琳
阳春华
桂卫华
机构
[1] 不详
[2] 中南大学自动化学院
[3] 不详
基金
国家重点研发计划; 湖南省自然科学基金;
关键词
流程工业; 深度学习; 数据解析; 数据建模;
D O I
暂无
中图分类号
F424 [工业建设与发展]; TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
深度学习是近年来发展的人工智能技术。相比于传统浅层学习模型,深度学习具有强大的特征表示和函数拟合能力。深度学习能够从海量数据中提取层次特征,其在流程工业过程数据驱动建模中具有较大的潜力和应用前景。首先简单介绍了深度学习的发展历程;然后,介绍了4类广泛使用的深度学习模型以及它们在流程工业过程数据建模中的应用;最后,在流程工业过程数据建模领域对深度学习进行了简要总结。
引用
收藏
页码:107 / 115
页数:9
相关论文
共 22 条
  • [11] Deep convolutional neural network model based chemical process fault diagnosis[J] . Hao Wu,Jinsong Zhao. Computers and Chemical Engineering . 2018
  • [12] Automated feature learning for nonlinear process monitoring – An approach using stacked denoising autoencoder and k-nearest neighbor rule[J] . Zehan Zhang,Teng Jiang,Shuanghong Li,Yupu Yang. Journal of Process Control . 2018
  • [13] Performance of Convolutional Neural Networks for Feature Extraction in Froth Flotation Sensing
    Horn, Z. C.
    Auret, L.
    McCoy, J. T.
    Aldrich, C.
    Herbst, B. M.
    [J]. IFAC PAPERSONLINE, 2017, 50 (02): : 13 - 18
  • [14] A deep belief network based fault diagnosis model for complex chemical processes[J] . Zhanpeng Zhang,Jinsong Zhao. Computers and Chemical Engineering . 2017
  • [15] Data-driven soft sensor development based on deep learning technique[J] . Chao Shang,Fan Yang,Dexian Huang,Wenxiang Lyu. Journal of Process Control . 2014
  • [16] A fast learning algorithm for deep belief nets
    Hinton, Geoffrey E.
    Osindero, Simon
    Teh, Yee-Whye
    [J]. NEURAL COMPUTATION, 2006, 18 (07) : 1527 - 1554
  • [17] Soft sensors for on-line biomass measurements[J] . Lei Zhi Chen,Sing Kiong Nguang,Xue Mei Li,Xiao Dong Chen. Bioprocess and Biosystems Engineering . 2004 (3)
  • [18] Long short-term memory
    Hochreiter, S
    Schmidhuber, J
    [J]. NEURAL COMPUTATION, 1997, 9 (08) : 1735 - 1780
  • [19] SUPPORT-VECTOR NETWORKS
    CORTES, C
    VAPNIK, V
    [J]. MACHINE LEARNING, 1995, 20 (03) : 273 - 297
  • [20] A logical calculus of the ideas immanent in nervous activity[J] . Warren S. McCulloch,Walter Pitts. Bulletin of Mathematical Biology . 1990 (1-2)