Estimates for eigenvalues of Laplacian operator with any order

被引:0
|
作者
Fa-en WU~(1+) Lin-fen CAO~2 1 Department of Mathematics
2 Department of Mathematics
机构
基金
中国国家自然科学基金;
关键词
Dirichlet problem; eigenvalue estimate; Laplacian operator;
D O I
暂无
中图分类号
O175.3 [微分算子理论];
学科分类号
摘要
Let D be a bounded domain in an n-dimensional Euclidean space R.Assume that 0<λ≤λ≤…≤λ≤…are the eigenvalues of the Dirichlet Laplacian operator with any order l: (-△)u=λu,in D u=■=…=■=0,on■■D. Then we obtain an upper bound of the(k+1)-th eigenvalueλin terms of the first k eigenvalues. sum from i=1 to k(λ-λ)≤(1/n)[4l(n+2l-2)]{sum from i=1 to k(λ-λ)λsum from i=1 to k(λ-λ)λ}. This ineguaiity is independent of the domain D.Furthermore,for any l≥3 the above inequality is better than all the known results.Our rusults are the natural generalization of inequalities corre- sponding to the case l=2 considered by Qing-Ming Cheng and Hong-Cang Yang.When l=1,our inequalities imply a weaker form of Yang inequalities.We aslo reprove an implication claimed by Cheng and Yang.
引用
收藏
页码:1078 / 1086
页数:9
相关论文
共 50 条